
EuroProofNet

Natty: A Natural-Language Proof Assistant

Adam Dingle

Charles University, Prague

June 5, 2025

Outline

Overview
Vision
The landscape of interactive and automatic provers
Current status
Comparison with Naproche

Tutorial
Verifying some classic mathematics
Natural-language input format

How Natty works
Translating text to logical formulas
Superposition-based prover

Future work

Outline

Overview
Vision
The landscape of interactive and automatic provers
Current status
Comparison with Naproche

Tutorial
Verifying some classic mathematics
Natural-language input format

How Natty works
Translating text to logical formulas
Superposition-based prover

Future work

Vision

▶ Type mathematics in an editor, Natty will verify it

▶ Plain text with Unicode symbols

▶ Real-time feedback

▶ Controlled vocabulary/grammar, but as natural as possible

▶ Any mathematical domain

A proof in Natty

Interactive provers = proof assistants

▶ The user interacts with the system to build proofs

▶ In many systems, the user uses tactics to work toward a goal

▶ Some systems invoke automatic provers to verify steps

▶ Lots of math has been formalized in these systems

▶ Proofs are often not easy to read

▶ Isabelle, HOL Light, Rocq, Lean, ...

Wiedijk’s 100 theorems

Wiedijk’s 100 theorems over time

2008 2012 2016 2020 2024
year

0

20

40

60

80

100
th

eo
re

m
s p

ro
ve

d
Theorems from Wiedijk 100 list proved over time

Isabelle
HOL Light
Rocq
Lean
Metamath
Mizar
Naproche

Proof assistants: logical foundations

▶ First-order logic
▶ Usual foundations: ZFC axioms for set theory
▶ Everything (functions, integers, ...) built from sets
▶ Mizar, Metamath, Naproche

▶ Classical higher-order logic
▶ Evolved from Alonzo Church’s work on simple type theory
▶ Every variable has a type
▶ Functions are primitive
▶ Sets are usually functions of type τ → B
▶ HOL Light, Isabelle, Natty

▶ Dependent type theory
▶ Martin-Lof type theory and descendents
▶ Rocq, Lean

▶ Choice of foundation is visible to the user to some extent

Proof assistants: a spectrum of naturalness

Metamath HOL Light Isabelle Mizar
Naproche
Natty

←− Less natural More natural −→

$(Prove a theorem $)
th1 $p |- t = t $=

$(Here is its proof: $)
tt tze tpl tt weq tt tt weq tt a2 tt tze tpl

tt weq tt tze tpl tt weq tt tt weq wim tt a2

tt tze tpl tt tt a1 mp mp

$.

Proof assistants: a spectrum of naturalness

Metamath HOL Light Isabelle Mizar
Naproche
Natty

←− Less natural More natural −→

definition

let n be Nat;

func cseq n -> Real_Sequence means :Def3: :: IRRAT_1:def 3

for k being Nat holds it . k = (n choose k) * (n ^ (- k));

correctness

proof end;

end;

Proof assistants: a spectrum of naturalness

Metamath HOL Light Isabelle Mizar
Naproche
Natty

←− Less natural More natural −→

Automatic provers

▶ E, Vampire, Zipperposition, ...

▶ Historically first-order logic, now also higher-order

▶ No major automatic provers for dependent type theory

▶ The most competitive provers use superposition

▶ Natty also contains an automatic prover

Why Natty has its own internal prover

▶ Natty needs to verify proof steps
▶ in higher-order logic
▶ quickly (< 5 sec)
▶ reliably (100% success rate)

▶ Existing provers cannot do this!
▶ Natty’s prover has a different objective

▶ Goal: Prove easy theorems/steps quickly
▶ Non-goal: Prove hard theorems (TPTP) in minutes

What Natty does

▶ Natural-language input: axioms, definitions, theorems

▶ A theorem may or may not include a proof

▶ Natty translates each theorem or proof step to a formula

▶ Can prove formulas directly, or export them to THF files

▶ Real-time feedback in Visual Studio Code

Natty: a young system

▶ 7 months of development

▶ 4000 lines of OCaml
▶ 66 theorems about N and Z −→ 335 proof steps

▶ N: proves 98% of steps, competitive performance
▶ Z: proves 82% of steps, slower

▶ Not quite ready for other mathematical domains
▶ Type system, natural-language grammar need expansion
▶ Automatic prover not scalable to larger premise sets

Performance comparison

Table: Theorems and proof steps (N)

Natty E Vampire Zipperposition

proved (of 214) 209 179 173 185
proved (%) 98% 84% 81% 86%
average time 0.14 0.10 0.19 0.26

Table: Theorems and proof steps (Z)

Natty E Vampire Zipperposition

proved (of 121) 99 107 90 75
proved (%) 82% 88% 74% 62%
average time 0.50 0.25 0.29 0.46

Comparison with Naproche

Naproche Natty
Logic first-order higher-order
Input LaTeX plain text with Unicode

Proof structure explicit implicit
Prover usually E internal

Written in Haskell OCaml
IDE Isabelle Visual Studio Code

Wiedjik thms proven 10 0

Outline

Overview
Vision
The landscape of interactive and automatic provers
Current status
Comparison with Naproche

Tutorial
Verifying some classic mathematics
Natural-language input format

How Natty works
Translating text to logical formulas
Superposition-based prover

Future work

Getting Natty

▶ Currently you must build from source using OCaml 5.3.0

▶ Natty: https://github.com/medovina/natty

▶ VS Code extension:
https://github.com/medovina/natty-vscode

https://github.com/medovina/natty
https://github.com/medovina/natty-vscode

A classic text

▶ Who wrote this?

▶ When?

Giuseppe Peano

Arithmetices Principia, 1889

▶ Peano axioms for N
▶ Origin of ∈, ∩, ∪, ⊂

A classic text

▶ Who wrote this?

▶ When?

Giuseppe Peano

Arithmetices Principia, 1889

▶ Peano axioms for N
▶ Origin of ∈, ∩, ∪, ⊂

Arithmetices Principia: Logical propositions

Arithmetices Principia: Logical propositions

Arithmetices Principia: Axioms for N

Arithmetices Principia: First theorems

Arithmetices Principia: Definition of addition

Arithmetices Principia: Theorems about addition

Arithmetices Principia: More theorems about addition

Arithmetics Principia: theorems in Natty

Input file nat.n

▶ The naturals N
▶ Defined using Peano axioms
▶ +, ·, >, < on N defined axiomatically
▶ 40 theorems

▶ The integers Z
▶ Defined axiomatically using N
▶ +, ·, >, < on Z defined axiomatically
▶ 26 theorems

▶ A foundation for more number theory

Natural input: universal sets

▶ N is a type

▶ It is also the universal set λx : N .⊤

Natural input: implicit multiplication

▶ c(a+ b) means c · (a+ b)

▶ s(a) is a function application

Types distinguish these cases!

Outline

Overview
Vision
The landscape of interactive and automatic provers
Current status
Comparison with Naproche

Tutorial
Verifying some classic mathematics
Natural-language input format

How Natty works
Translating text to logical formulas
Superposition-based prover

Future work

Parsing

▶ Context-free grammar (200 lines of EBNF)

▶ Parsed using parser combinators

Parser: output

▶ Parser outputs a series of statements
▶ TypeDecl, ConstDecl, Axiom, Definition, Theorem

▶ Each proof is parsed into a series of steps
▶ Assert, Let, LetVal, Assume, IsSome, Escape

Proof steps for Peano theorem 22

Proof structure inference

▶ Parser outputs a linear series of proof steps

▶ Natty will infer a block structure for the proof

▶ Important question: when are assumptions discharged?

▶ If the block structure is wrong, proof will fail to verify!

Proof tree for Peano theorem 22

Proof structure inference: heuristics

▶ Definition: a block is a step plus all its descendents in the tree
▶ A Let or LetVal block encloses a scope that is as small as

possible, however
▶ must enclose all steps that refer to variable(s) introduced by S

▶ An Assume or IsSome block extends to the end of its nearest
enclosing Let or LetVal block

▶ An Escape step or assertion of ⊥ will force an Assume block
to end

Proof structure inference: Escape steps

▶ Words such as “now”, “next” emit an Escape step

▶ This forces an assumption to be discharged

Formula generation

▶ After parsing and type checking, Natty generates formulas

▶ Each formula has a set of premises available for proving it
▶ A theorem with no proof generates a single formula

▶ Its premises are all previous axioms/theorems in the input

▶ If a theorem has a proof:
▶ Each step Assert(ϕ) produces the formula ϕ
▶ Each step IsSome(x, τ , ψ) produces the formula ∃x : τ . ψ
▶ A formula’s premises are the conclusions of earlier steps in the

proof, plus axioms/theorems that appeared earlier in the input

Natty’s automatic prover

▶ Based on higher-order superposition calculus
▶ ... but only an incomplete fragment

▶ Negates the goal, searches for ⊥
▶ Uses DISCOUNT loop, also found in E

▶ Unification is mostly first-order

▶ Term ordering uses lexicographic path order

Proof procedure

// U = unprocessed (passive) set
// P = processed (active) set
while U ̸= 0 do

Choose a given formula f from U
Remove f from U, add f to P
Simplify formulas in P by rewriting
Generate new formulas G from P via superposition
if any formula in G is ⊥ then exit (proof found)
Add formulas G to U

Given formula selection

▶ A single priority queue holds all unprocessed formulas

▶ The queue orders formulas by cost

▶ The cost of a formula is the sum of the costs of all
superposition steps in its derivation

▶ The cost of each superposition step is calculated heuristically
using a function that was derived via simple machine learning

The cost of a formula

Heuristic cost function

▶ Natty can output a CSV file with all formulas generated
during a proof

▶ Each formula has features (weight, # of literals, ...)

▶ Each formula was either used or not used in the proof

▶ Using supervised learning, we can build a classifier that
predicts the probability that a formula will be used

▶ Natty uses logistic regression for classification

▶ The lasso = ℓ1 regularization selects a small number of
features

▶ Goal: a simple, explainable model

The learned cost function

// The cost of a superposition step producing ϕ from ψ1, ψ2.
Learned-Cost(ϕ) =
0.668
+ 0.041 if ϕ was generated by paramodulation
− 0.030 if any ancestor of ϕ is a hypothesis
− 0.251 if any ancestor of ϕ is the goal formula
− 0.007 if ψ1 or ψ2 is a definition
− 0.399 if ψ1 or ψ2 is an inductive formula
− 0.009 if lits(ϕ) < min(lits(ψ1), lits(ψ2))
+ 0.007 if lits(ϕ) > 1
+ 0.082 · (lits(ϕ)− lits(ψ2))
+ 0.008 · (weight(ϕ)−max(weight(ψ1),weight(ψ2)))
+ 0.002 · (weight(ϕ)− weight(ψ2))
− 0.182 if ϕ was generated by resolution and

weight(ϕ) < min(weight(ψ1), weight(ψ2))

Why do provers fail to prove trivial proof steps?

▶ Some easy proof steps require only one or two superpositions

▶ But provers such as E and Vampire may fail to prove them!

Rewriting can make easy problems hard

▶ Destructive rewriting is critical for prover efficiency

▶ But it can turn easy problems into hard ones!
▶ Natty combats this in two ways

▶ Quick refute searches for single-step proofs before main
refutation loop

▶ Main loop introduces goal, then hypotheses, then goal again

Outline

Overview
Vision
The landscape of interactive and automatic provers
Current status
Comparison with Naproche

Tutorial
Verifying some classic mathematics
Natural-language input format

How Natty works
Translating text to logical formulas
Superposition-based prover

Future work

Future work

▶ Natural language
▶ Allow types named by words, e.g. “a and b are integers”
▶ Allow predicates named by words, e.g. “n is prime”
▶ Allow relations named by words, e.g. “a divides b”

▶ Type system
▶ Polymorphic types, so we can talk about sets of any type
▶ Will probably require type inference
▶ May make performance comparisons with E more difficult

▶ Automatic prover
▶ Include heuristic cost for known formulas
▶ Term index

▶ Infrastructure
▶ Allow a theory to span multiple source files
▶ Cache prover results

	Overview
	Vision
	The landscape of interactive and automatic provers
	Current status
	Comparison with Naproche

	Tutorial
	Verifying some classic mathematics
	Natural-language input format

	How Natty works
	Translating text to logical formulas
	Superposition-based prover

	Future work

