
Anti-unification: The Other Operation

David M. Cerna

Dynatrace Research, Czech Academy of Sciences

June 5th 2025

slide 1/44

Unification

s
?
= t

Given two symbolic expressions can we
instantiate occuring variables such that the
resulting expressions are equivalent?

▶ Heavily studied subject with multiple comprehensive surveys:
(Siekmann, 1989) and (Baader and Synder, 2001)

▶ Probably another such survey is due.

▶ Equating terms isn’t everything!

▶ Identifying how distinct expressions are related is also
fundamental.

slide 2/44

The Other Operator

slide 3/44

Babble: library learning modulo theory

Babble: Learning Better Abstractions with E-Graphs and Anti-
Unification, Cao et al., POPL 2023

slide 4/44

Anti-unification

▶ Process deriving from a set of symbolic expressions a new ex-
pression possessing commonalities shared between its members.

f

a g

g

c a

h

a

≜

f

a g

c h

a

=

f

a g

X h

a

▶ Independently introduced by Plotkin and Reynolds in 1970.
▶ “A note on inductive generalization” by G. D. Plotkin
▶ “Transformational systems and the algebraic structure of

atomic formulas” by J.C. Reynolds

▶ Many applications are covered in the following Survey:

Anti-unification and Generalization: A Survey, D.M. Cerna
and T. Kutsia, IJCAI 2023 doi.org/10.24963/ijcai.2023/736

slide 5/44

https://doi.org/10.24963/ijcai.2023/736

Applications: Inductive Synthesis

▶ Second-order anti-unification for program Replay.

The Replay of Program Derivations, R.W. Hasker, 1995, Thesis

▶ θ-subsumption for building bottom clauses.

Inverse entailment and Progol, S. Muggleton, 1995, NGCO

▶ Lggs used for recursive functional program synthesis.

IGOR II – an Analytical Inductive Functional Programming System,
M. Hofmann, 2010, PEPM

▶ Anti-unification for templating the recursion step.

Inductive Synthesis of Functional Programs: An Explanation Based
Generalization Approach, E. Kitzelmann U. Schmid, 2006, JMLR

▶ Flash-fill in Microsoft Excel.

Programming by Example using Least General Generalizations, By
M. Raza, S. Gulwani, N. Milic-Frayling, 2014, AAAI

slide 6/44

Applications:Bugs and Optimizations

▶ Extracting fixes from repository history.

Learning Quick Fixes from Code Repositories by R. Sousa , et al.,
2021, SBES

▶ Templating bugs with corresponding fixes.

Getafix: Learning to Fix Bugs Automatically By J. Bader, et al.,
2019, OOPSLA

▶ Templating configuration files to catagorize errors.

Rex: Preventing Bugs and Misconfiguration in Large Services Using
Correlated Change Analysis By Sonu Mehta, et al., 2020, NSDI

▶ Optimization of recursion schemes for efficient parallelizability.

Finding parallel functional pearls: Automatic parallel recursion
scheme detection in Haskell functions via anti-unification By A.
D. Barwell, C. Brown, K. Hammond, 2017, FGCS

slide 7/44

Applications:Theorem Proving

▶ Extraction of substitutions from substitution trees.

Higher-order term indexing using substitution trees By B. Pientka,
2009, ACM TOCL

▶ Grammar compression and inductive theorem proving.

Algorithmic Compression of Finite Tree Languages by Rigid Acyclic
Grammars, By S. Eberhard, G. Ebner, S. Hetzl, 2017, ACM TOCL

▶ Generating SyGuS problems.

Reinforcement Learning and Data-Generation for Syntax-Guided
Synthesis, By J. Parsert and E. Polgreen, 2024, AAAI

slide 8/44

Anti-Unification: Basics

▶ Let Σ be signature, V a countable set of variables, and
T (Σ,V) a term algebra.

▶ (Anti-Unification) For s, t ∈ T (Σ, ∅):
Does there exists g ∈ T (Σ,V) and substitutions σs and σt s.t.
gσs = s and gσt = t?

▶ The term g is referred to as a generalization of s and t.

▶ Observe that x ∈ V always generalizes s and t (typically...):

σs = {x 7→ s} , σt = {x 7→ t}

▶ Let’s look at an example.

slide 9/44

Anti-Unification: Basics

Consider,
f (g(b, a)) ≜ f (g(a, a))

▶ f (y) generalizes the terms,

{y ← g(b, a)} {y ← g(a, a)}

but, f (g(y , a)) is more specific

{y ← b} {y ← a}

▶ Let g1 and g2 be generalizers of t1 and t2, then g1 is less
general then g2, g2 ≺ g1 if there exists µ s.t. g2µ = g1.

▶ g1 is least general if for every comparable term g2, g2 ≺ g1.

slide 10/44

A General Framework

G′ G
P

O

B µ1 Bµ2

Generic Concrete

O T (Σ,V)
M First-order substitutions

B = (syntactic equality)

P ⪯ : s ⪯ t if sσ = t for some σ

▶ Goal: from O1,O2 ∈ O (symbolic expressions) derive G ∈ O
possessing certain commonalities shared by O1 and O2.

▶ Specification: define (a) a class of mappingsM from
O → O, (b) a base relation B consistent withM, and (c) a
preference relation P consistent with B.

▶ Result: G is a B-generalization of O1 and O2 and most
P-preferred (“better” than G ′).

slide 11/44

A General Framework

▶ A set G ⊂ O is called P-complete set of B-generalizations of
O1,O2 ∈ O if:
▶ Soundness: Every G ∈ G is a B-generalization of O1 and O2.
▶ Completeness: For each B-generalization G ′ of O1 and O2,

there exists G ∈ G such that P(G ′,G) (G is more preferred).

▶ Furthermore, G is minimal if:
▶ Minimality: No distinct elements of G are P-comparable: if

G1,G2 ∈ G and P(G1,G2), then G1 = G2.

▶ Minimal Complete sets come in four Types:
▶ Unitary (1): G is a singleton,
▶ Finitary (ω): G is finite and contains at least two elements,
▶ Infinitary (∞): G is infinite,
▶ Nullary (0): G does not exist (minimality and completeness

contradict each other).

▶ Types are extendable to generalization problems.

slide 12/44

Equational Generalization

▶ Equational considers the same objects (O) as first-order
syntactic, but using different base and preference relations:

Generic Concrete (FOEG)

O T (Σ,V)
M First-order substitutions

B ≈E (equality modulo E)

P ⪯E (more specific, less general modulo E)
s ⪯E t iff sσ ≈E t for some σ

slide 13/44

Complete sets of solutions

▶ Here are some examples for each category of complete sets:
▶ UNITARY:

▶ First-Order terms
▶ High-Order patterns λx , y .X (x , y)

▶ FINITARY:
▶ Permutative theories f (x , y) = f (y , x)
▶ Unranked Terms and Hedges flexi-arity symbols
▶ 1-unital theory f (ef , x) = f (x , ef) = x

▶ INFINITARY:
▶ Idempotent theories, f (x , x) = x
▶ Absorptive theories, f (ef , x) = f (x , ef) = ef

▶ NULLARY:
▶ 2-Unital Theory f (ef , x) = f (x , ef) = x
▶ Simply typed lambda calculus
▶ Cartesian Combinators
▶ f(a)=a, f(b)=b
▶ TOOOOOO Many

slide 14/44

Nullarity Around Every Corner

▶ Let us focus on the following theory:

E = {f (a) = a, f (b) = b}

▶ Why is it NULLARY? Consider the problem:

a ≜ b

▶ x is a solution {x 7→ a} and {x 7→ a}
▶ f n(x), n ≥ 0 is a solution {x 7→ a} and {x 7→ a}
▶ x ≺E f (x) ≺E f (f (x)) ≺E . . .

▶ Thus, mcsgE (a, b) does not exists.

▶ Many relatively simple theories are Nullary.

slide 15/44

Nullarity of 2-unital Theories

▶ Let us focus on the following theory:

E = {f (x , ϵf) = f (ϵf , x) = x , g(x , ϵg) = g(ϵg , x) = x}

▶ To understand the complexity, consider the problem:

h(a, a) ≜ f (h(b, ϵf), b)

▶ x is a solution {x 7→ h(a, a)} and {x 7→ f (h(b, ϵf), b)}

slide 16/44

▶ However,
h(a, a) ≡E f (h(a, a), ϵf).

▶ Thus, f (h(x , y), z) is a solution: {x 7→ a, y 7→ a, z 7→ ϵf } and
{x 7→ b, y 7→ ϵf , z 7→ b}

▶ Observe f (x , y) generalizes a ≜ b.

▶ Thus, f (h(f (x , y), x), z) is a solution:
{x 7→ a, y 7→ ϵf , z 7→ ϵf } and {x 7→ ϵf , y 7→ b, z 7→ b}

▶ We cannot get more specific using only f .

▶ What if we use g as well?

slide 17/44

Nullarity of 2-unital Theories

▶ Consider ϵf ≜ ϵg :

x ⪯E f (x , y)≺E f (g(x , y), x)≺E f (g(x , f (g(x , y), x), x)

▶ Observe x generalizes ϵf ≜ ϵg and y generalizes ϵg ≜ ϵf
▶ Generates an infinite sequence of greater specificity.

▶ But may contain spiky branches.
▶ But may contain mininal generalizations.

▶ To show: every complete set contains an infinite sequence of
greater specificity.

slide 18/44

Nullarity of 2-unital Theories

▶ g ∈ GE (s, t) and let σ1 and σ2 substitutions. Then σ1 and σ2
are (s, t,E)-generalizing if
▶ gσ1 ≈E s, gσ1 ≈E t, and
▶ the range of σ1 and σ2 are ground.

Definition (Reduced Form)

Let g ∈ GE (s, t) and let σ1 and σ2 be generalizing substitutions.
Then g is in reduced form if

1. For every x ∈ var(g), xσ1 ̸≈U xσ2, and

2. For x , y ∈ var(g), x = y or for some θ ∈ {σ1, σ2}, xθ ̸≈U yθ.

▶ Above generalizations are reduced.

slide 19/44

Nullarity of 2-unital Theories

Lemma
For every g ∈ GE (ϵf , ϵg) there exists ϑ such that gϑ ∈ GE (ϵf , ϵg)
and reduced.

▶ Observe:

1) The set of reduced generalizations is complete.
2) Every complete set can be made reduced.

Lemma
Let g ∈ GE (ϵf , ϵg) be reduced. Then there exists reduced
g′ ∈ GE (ϵf , ϵg) such that g ≺E g′.

▶ Reduced generalization are comparable.

slide 20/44

Nullarity of 2-unital Theories

Theorem
Let C be a complete set of generalizations of ϵf ≜ ϵg . Then C
contains g and g′ such that g ≺U g′.

Proof.
We can transform C into a set of reduced generalizations R which
is also complete. We know that for every generalization in R there
exists a more specific generalization. And, because C is complete,
C must contain an even more specific generalization.

Corollary

Unital anti-unification is nullary.

Unital anti-unification: Type and algorithms, M. D. Cerna and T.
Kutsia, 2020, Formal Structures, Computation, and Deduction
(FSCD)

slide 21/44

Anti-unification over Lambda Terms

▶ Let B be a set of base types and Types is the set of types
inductively constructed from δ and →.

▶ The set Λ is constructed using the following grammar:

t ::= x | c | λx .t | t1t2

▶ A lambda term is a pattern if free variables only apply to
distinct bound variables.

▶ λx .f (X (x), c) is a pattern, but λx .f (X (X (x)), c) and
λx .f (X (x , x), c) are not.

▶ Anti-unification of an AUP X (x⃗) : t ≜ s often requires
▶ t and s are of the same type ,
▶ t and s are in η-long β-normal form,
▶ and X does not occur in t and s.

slide 22/44

Anti-unification over Lambda Terms

▶ Calculus of Constructions, pattern fragment.

Unification and anti-unification in the calculus of construction By
F. Pfenning, 1991, LICS

▶ Anti-unification in λ2 (P based on β-reduction).

Higher order generalization and its application in program verifica-
tion, Lu et al., 2000, AMAI

▶ Pattern Anti-unification in simply-typed λ-calculus.

Higher-order pattern anti-unification in linear time, A. Baumgartner
et al., 2017, JAR

▶ Top-maximal shallow, simply-typed λ-calculus.

A generic framework for higher-order generalization, D. Cerna and
T. Kutsia, 2019, FSCD

▶ λ-calculus with recursive let expressions.

Towards Fast Nominal Anti-unification of Letrec-Expressions, M.
Schmidt-Schauß, D. Nantes-Sobrinho et al., 2023, CADE

slide 23/44

Rules: Pattern Anti-unification

Dec: Decomposition

{X (x⃗) : h(tm) ≜ h(sm)} ⊎ A; S ; σ =⇒
{Ym(x⃗) : tm ≜ sm} ∪ A; S ; G{X 7→ λx⃗ .h(Ym(x⃗))},
where h is constant or h ∈ x⃗ , and Ym are fresh variables of the
appropriate types.

Abs: Abstraction Rule

{X (x⃗) : λy .t ≜ λz .s} ⊎ A; S ; σ =⇒ {X ′(x⃗ , y) : t ≜
s{z 7→ y}} ∪ A; S ; G {X 7→ λx⃗ , y .X ′(x⃗ , y)} ,
where X ′ is a fresh variable of the appropriate type.

slide 24/44

Extensions: Lambda Terms

Sol: Solve Rule

{X (x⃗) : t ≜ s} ⊎ A; S ; σ =⇒
A; {Y (y⃗) : t ≜ s} ∪ S ; G{X 7→ λx⃗ .Y (y⃗)},
where t and s are of a base type, head(t) ̸= head(s) or
head(t) = head(s) = h ̸∈ x⃗ . The sequence y⃗ is a subsequence of x⃗
consisting of the variables that appear freely in t or in s, and Y is
a fresh variable of the appropriate type.

Mer: Merge Rule

A; {X (x⃗) : t1 ≜ t2,Y (y⃗) : s1 ≜ s2} ⊎ S ; σ =⇒ A; {X (x⃗) : t1 ≜
t2} ∪ S ; G{Y 7→ λy⃗ .X (x⃗π)},
where π : {x⃗} → {y⃗} is a bijection, extended as a substitution with
t1π = s1 and t2π = s2.

slide 25/44

Pattern Anti-unification: Example

{X : λx , y .f (u(g(x), y), u(g(y), x)) ≜ λx ′, y ′.f (h(y ′, g(x ′)), h(x ′, g(y ′)))};
∅;X =⇒Abs×2

{X ′(x , y) : f (u(g(x), y), u(g(y), x)) ≜ f (h(y , g(x)), h(x , g(y)))}; ∅;
λx , y .X ′(x , y) =⇒Dec

{Y1(x , y) : u(g(x), y) ≜ h(y , g(x)),Y2(x , y) : u(g(y), x) ≜ h(x , g(y))}; ∅;
λx , y .f (Y1(x , y),Y2(x , y)) =⇒Sol

{Y2(x , y) : u(g(y), x) ≜ h(x , g(y))}; {Y1(x , y) : u(g(x), y) ≜ h(y , g(x))};
λx , y .f (Y1(x , y),Y2(x , y)) =⇒Sol

∅; {Y1(x , y) : u(g(x), y) ≜ h(y , g(x)),Y2(x , y) : u(g(y), x) ≜ h(x , g(y))};
λx , y .f (Y1(x , y),Y2(x , y)) =⇒Mer

∅; {Y1(x , y) : u(g(x), y) ≜ h(y , g(x))}; λx , y .f (Y1(x , y),Y1(y , x))

slide 26/44

Friends of Patterns

▶ While useful, patterns are quite inexpressive.

Functions-as-Constructors Higher-Order Unification, T. Libal and
D. Miller, 2016, FSCD

▶ Restricted terms occur as arguments to free variables.
▶ Restricted terms are inductively constructed from bound

variables and constant symbols with arity > 0.
▶ Arguments cannot be subterms of each other.

▶ X (f (x), y) is ok, but not X (f (x), x).

▶ Arguments cannot be proper subterms of each other.
▶ g(X (f (x), y),Y (f (x), z)) is ok, but not g(X (f (x), y),Y (x)).

▶ Unitary, but is Finitary without variable restrictions.

▶ Anti-unification is Unitary without most restrictions.

slide 27/44

Friends of Patterns

▶ Rules construct Top-maximal Shallow Generalizations.
▶ λx .f (X (x)) is preferred to λx .X (f (x)) when possible.
▶ λx .f (X (X (x))) or λx .f (X (Y (x))) not allowed.

▶ Only the Solve rule changes:

Sol: Solve

{X (x⃗) : t ≜ s} ⊎ A; S ; r =⇒ A; {Y (y1, . . . , yn) :
(Ct y1 · · · yn) ≜ (Cs y1 · · · yn)} ∪ S ; r{X 7→ λx⃗ .Y (q1, . . . , qn)},

where t and s are of a basic type, head(t) ̸= head(s),
q1, . . . , qn are distinct subterms of t or s,Ct and Cs are terms
such that (Ct q1 · · · qn) = t and (Cs q1 · · · qn) = s, Ct and Cs

do not contain any x ∈ x⃗ , and Y , y1, . . . , yn are distinct fresh
variables of the appropriate type.

▶ Pattern if the q1, . . . , qn ∈ x⃗ , and Ct = λx⃗ .t and Cs = λx⃗ .s.

slide 28/44

Anti-Unification beyond Patterns

▶ Not every choice of Cs and Ct will result in a Unitary variant.

▶ Inconsistent choices for Cs and Ct can result in the
computation of non-lggs.

▶ In particular how the qi s are chosen matters:
▶ qi s must match a selection condition.
▶ qi s must occur in both terms.
▶ qi s must not be positionally ordered within the terms.

▶ These conditions allowed us to define 4 Unitary variants.

slide 29/44

Anti-Unification beyond Patterns

▶ Projection Anti-Unification:
▶ q1 = t, q2 = s, Ct = λz1, z2.z1, Cs = λz1, z2.z2.

▶ Common Subterms Anti-Unification:
▶ qi s position maximal common subterms.
▶ Ct = λy1, . . . , yn. t[p1 7→ y1] · · · [pm 7→ yn]
▶ Cs = λy1, . . . , yn. s[l1 7→ y1] · · · [lm 7→ yn]

▶ Restricted Function-as-constructor Anti-Unification:
▶ qi s position maximal common subterms minus those which

break the Local variable condition.
▶ Ct and Cs are the same.

▶ Function-as-constructor Anti-Unification:
▶ qi s position maximal common subterms minus those which

break the Local/Global variable conditions.
▶ Ct and Cs are the same.

▶ Other variants are definable (based on the selection condition).

slide 30/44

Anti-Unification beyond Patterns: Example

{X : λx .f (h1(g(g(x)), a, b), h2(g(g(x)))) ≜

λy .f (h3(g(g(y)), g(y), a), h4(g(g(y))))}; ∅; X
=⇒Abs

{X ′(x) : f (h1(g(g(x)), a, b), h2(g(g(x)))) ≜

f (h3(g(g(x)), g(x), a), h4(g(g(x))))}; ∅; λx .X ′(x)

=⇒Dec

{Z1(x) : h1(g(g(x)), a, b) ≜ h3(g(g(x)), g(x), a),

Z2(x) : h2(g(g(x))) ≜ h4(g(g(x))}; ∅;
λx .f (Z1(x),Z2(x))

=⇒Sol-RFC

slide 31/44

Anti-Unification beyond Patterns: Example

{Z2(x) : h2(g(g(x))) ≜ h4(g(g(x))};
{Y1(y1) : h1(g(y1), a, b) ≜ h3(g(y1), y1, a)};

λx .f (Y1(g(x)),Z2(x))

=⇒Sol-RFC

∅; {Y1(y1) : h1(g(y1), a, b) ≜ h3(g(y1), y1, a),

Y2(y2) : h2(y2) ≜ h4(y2)};
λx .f (Y1(g(x)),Y2(g(g(x)))).

▶ Open: Extending this idea to other parts of the lambda Cube,
and beyond?

▶ Beneficial for proof generalization.
▶ What happens when the terms are no longer shallow?

slide 32/44

Deep Lambda Terms: Nullarity

▶ λx .λy .f (x) ≜ λx .λy .f (y) has no solution set.
▶ λx .λy .f (Z (x , y)) < λx .λy .f (Z (Z (x , y),Z (x , y))) < · · ·

slide 33/44

Deep Lambda Terms: Nullarity

▶ Its pattern generalization is gp = λx .λy .f (Z (x , y)).

▶ A generalization more specific gp is pattern-derived

Definition
Let g be pattern-derived. Then g is tight if for all W ∈ FV(g):

1) g{W 7→ λbk .bi} ̸∈ G(s, t), if W has type γk → γi and for
1 ≤ i ≤ k and γi ∈ B, and

2) For (σ1, σ2) ∈ GS(s, t, g), g{W 7→ t1}, g{W 7→ t2} ̸∈ G(s, t) where
t1 = Wσ1, t2 = Wσ2.

▶ Observe that tight is very similar to reduced.

slide 34/44

Deep Lambda Terms: Nullarity

Definition
Let g = λx .λy .f (Z (sm)) be a tight generalization of s ≜ t where

1) Z has type δm → α for 1 ≤ i ≤ m, and si has type δi .

2) (σ1, σ2) ∈ GS(s, t, g) such that Zσ1 = r1 and Zσ2 = r2,

3) r1 and r2 are of type δm → α, and

4) Y such that Y ̸∈ FV(g) and has type α→ α→ α.

Then the g-pseudo-pattern, denoted G (g ,Z ,Y , σ1, σ2), is

g{Z 7→ λbm.Y (r1(bm), r2(bm)))} = λx .λy .f (Y (r1(qm), r2(qm))))

where for all 1 ≤ i ≤ m, qi = si{Z 7→ λbm.Y (r1(bm), r2(bm)))}.
▶ Essentially, we regularized the structure of the generalizations.

slide 35/44

Deep Lambda Terms: Nullarity

Theorem
For anti-unification of simply-typed lambda terms is nullary.

Proof.
Let us assume that C ⊆ G(s, t) is minimal and complete. We
know C contains a pattern-derived generalization g . Observe that
g can be transformed into an tight generalization g ′ that is also
pattern-derived. We can derive a pseudo-pattern generalization g ′′

of g ′. Finally, g∗ = g ′′{Y 7→ λw1.λw2.Y (Y (w1,w2),Y (w1,w2))}
is strictly more specific than g ′′. This implies that g <L g∗,
entailing that C is not minimal.

▶ Result extendable to non-shallow fragments.

One or nothing: Anti-unification over the simply-typed lambda cal-
culus, D. Cerna and M. Buran, 2024, ACM TOCL.

slide 36/44

Equational Anti-unification

▶ Anti-unification over commutative theories.

Unification, weak unification, upper bound, lower bound, and gen-
eralization problem, F. Baader, 1991, RTA

▶ Grammar for a complete set of E-generalizations:

E-generalization using grammars, J. Burghardt, 2005, AI

▶ Minimal complete set of AC-generalizations.

A modular order-sorted equational generalization algorithm, M.
Alpuente et al., 2014, Inf. Comput.

▶ Minimal complete set of I-generalizations.

Idempotent anti-unification, D. Cerna and T. Kutsia, 2020, ACM
TOCL

▶ Absorptive Theories.

Anti-unification over Absorption Theories, M. Ayala-Rincón et al.,
2024, IJCAR

slide 37/44

E-generalization: Important, but Poorly Behaved...

Unification theory, Jörg H. Siekmann, 1989, Journal Of Symbolic
Computation

▶ Introduces hierarchy of theories.
▶ Simple theories do not allow subterm collapse
▶ {f(a)=a, f(b)=b} is not simple.

▶ Even here strange theories exists:

E1 : {f (a, g(x)) = f (a, x), f (b, g(x)) = f (b, x)}

E2 : {s(f (a, g(x))) = f (a, x), s(f (b, g(x))) = f (b, x)}

▶ E1 is Nullary and E2 is Infinitary.

▶ Consider the terms f (a, a) and f (b, b).
▶ Nothing changes if we restrict to Linear generalizations:

▶ Each variable occurs at most once.

slide 38/44

Linearity does matter

▶ Linear generalizations are easier to construct.
▶ Applications often use linear rather than non-linear

generalizations.
▶ well-behaved.

▶ Is there a relation between linear and non-linear solutions?

▶ consider the following theory:

E : {h(x , b) ≈E g(x), h(x , a) ≈E g(x), f (x , g(y)) ≈E f (x , y)}

▶ The theory is Simple, but
▶ linear is well-behaved
▶ Non-linear is Nullary

▶ Consider terms f (a, c) and f (b, d).
▶ f (x , y)
▶ f (x , y), f (x , h(y , x)), f (x , h(h(y , x), x)), ...

slide 39/44

Linearity does matter

▶ For Ground Theories such issues only occur if we focus on the
problem type.

▶ Consider the theory:

E :


g(c) = c , g(d) = d ,

f (a, c , d) = e, f (b, c, d) = h,
f (a, c , c) = e, f (b, d , d) = h


▶ For terms e and h there is a single linear generalization

▶ But non-linear generalization is Nullary.
▶ f (x , y , z)
▶ f (x , g(y), g(y)), f (x , g(g(y)), g(g(y))),...

▶ Observe that for c and d, linear generalization is nullary.

slide 40/44

Sufficient Condition

Linear Correspondence
Given a theory E . Does the existence of a minimal complete set

of linear generalizations imply the existence of a minimal
complete set of generalizations?

▶ For Ground Theories linear correspondance holds.

Lemma
Let E be a ground equational theory, s, t ∈ T (Σ, ∅), and
p ∈ pos(s) such that s|p ∈ V. Then if s ≈E t, then p ∈ pos(t)
and path(s, p) = path(t, p).

▶ Ground theories cannot apply to non-ground terms.

slide 41/44

Beyond Ground Theories

▶ Consider the following theory from

Anti-unification over Absorption Theories, M. Ayala-Rincón et al.,
2024, IJCAR

E : {f (ϵf , x) = ϵf , f (x , ϵf) = ϵf }

▶ Linear generalization is Finitary, Non-linear is Infinitary
▶ We refer to such theories as Semi-ground.

▶ One side is ground, One side is not.

▶ Hard to define!

▶ Question: Linear Correspondance??

▶ Question: More general theories with Linear Correspondance??

slide 42/44

Selection Heuristics

▶ How to deal with the explosion?
▶ Alignment and Rigidity functions
▶ Skeletons
▶ beam search
▶ Syntactic restriction

▶ Recent Direction:
▶ Should the preference and base relations be Crisp?
▶ Are most lggs too distant from the generalized terms to be

generalizations?

▶ Is similarity and quantitative anti-unification a fix?

A Framework for Approximate Generalization in Quantitative The-
ories, T. Kutsia and C. Pau, 2022, FSCD

slide 43/44

Future Work

▶ Investigating the above questions

▶ New applications for anti-unification

▶ Developing methods for combining anti-unification algorithms
for disjoint equational theories
Combining Generalization Algorithms in Regular Collapse-Free The-
ories, M. Ayala-Rincón, D. Cerna, T. Kutsia and C. Ringeissen,
2025, FSCD

▶ Studying computational complexity and optimizations.

▶ risc.jku.at/sw/unification-and-anti-unification-algorithm-
library/

slide 44/44

https://risc.jku.at/sw/unification-and-anti-unification-algorithm-library/
https://risc.jku.at/sw/unification-and-anti-unification-algorithm-library/

