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Mathematical Discovery and Al

 “Within ten years a digital computer will discover and prove an important new mathematical
theorem”

(Newell & Simon 1958)

» ‘I expect, say, 2026-level Al, when used properly, will be a trustworthy co-author in
mathematical research, and in many other fields as well. Strangely, even nonsensical LLM-
generated math often references relevant concepts.”

(Terence Tao 2023)
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Al Will Become Mathematicians’ ‘Co-Pilot’
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Theory Exploration aka Conjecturing

One piece of the puzzle?

* Assist invention of conjectures about mathematical theories.
* New, interesting and non-trivial.

» Three approaches:
« Symbolic: classic Al methods — heuristic search using grammars, rules etc.

* Neural: modern machine learning based methods, often using Large Language Models (LLMs) or
other generative neural networks.

* Neuro-symbolic: combination of the two — can we get the best of both worlds?
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Symbolic Methods

* Long history of heuristic/search-based methods:
* AM (Lenat 1976),
 Grafitti (Fajtlowicz 1988),
* HR(L) (Colton/Pease 2000s),
* MATHsAID (McCasland 2010),
* IsaCoSy (Johannson et al 2011),
* IsaScheme (Montano-Rivas et al. 2012),
* TheoryMine (Bundy et al 2015).
* QuickSpec 2 (Smallbone et al. 2017).

 Application example: Generate lemmas for automated provers
* e.9. Lemma Discovery and Strategies for Induction (Einarsdottir et al. [JCAR 2024).

2025-06-04
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Symbolic conjecturing: QuickSpec

The Octonions

« Least known of the four normed division ©-® BB exemples — -z3h — 83524
algebras:

* reals, complex numbers and quaternions.

* Definitions in Haskell program (or TIP, a
SMTLIB-like format).

* No proofs - conjecture suggestions via
automated testing of terms in
equivalence classes.

Quick specifications for the busy programmer. N. Smallbone, M. Johansson, K. Claesson, M. Algehed. Journal of
Functional Programming 2017.
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Data-driven methods

Still (mostly) symbolic

* Idea: discovery by analogy to other lemmas.

« Templates (skeleton lemmas with “holes”) extracted, then synthesise instantiations for
holes.
* Proof pattern recognition for ACL2 (Heras et al. 2013). Symbols encoded as numeric vectors. Look for
analogies in this space.

* RoughSpec (Einarsdottir et al. 2021): make QuickSpec more efficient by restricting search space to
certain shapes.

) Spoiler alert: we'll
» Can templates be learned? get back to this in

the end!

2025-06-04
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Neural Methods D e

* GPT-2 model trained on Mizar (Urban & Jakubuv 2020)
» Generated new conjectures when temperature set just right.

» Conjecturing for HOL Light (Rabe et al. 2021)
 Skip-tree architecture. 10-30% new & interesting, rest false or repetitions.

* MINIMO — RL to generate novel conjectures (Poesia et al, NeurlPS 2024)
 Very restricted domains: propositional logic, Peano arithmetic, group theory.
» “Game” of conjecturing and proofs starting from the axioms.
* Neural model using constrained decoding to produce well-formed conjectures.

Conjecturing /\ Theorem Proving

rra:B ¢ e Proof Search (MCTS)
Axioms Conjecture 1: (1+14+0)=(14+1+40) Govjsetyel [Gory E@—il' =

@ Conjecture 2:  Y(n :nat),(0+n) =n < 2
i ofo

Conjecture N: Y(n,m:nat),n=1+m \ - O O >

Lapsiage ¥

ng K_/ New training data for Policy + Value + Conjecturing 2025-06-04
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Alpha Geometry

» AlphaGeometry — domain specific conjectures (Trinh et al, Nature 2024)

» Very performant on International Math Olympiad problems in geometry, including learning to suggest
additional constructs (lines, points etc) in Euclidian plane geometry.

SCIENCE

Al achieves silver-medal standard
solving International Mathematical
Olympiad problems

25 JULY 2024

AlphaProof and AlphaGeometry teams
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Generating Examples with Auxiliary Constructs

Fig. 3: AlphaGeometry synthetic-data-generation process.

From: Solving olympiad geometry without human demonstrations

a Sample b Symbolic deduction c Synthetic
random premises and traceback problems and proofs

2025-06-04
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Generating Examples with Auxiliary Constructs

 Synthetic training example: Fig. 3: AlphaGeometry synthetic-data-generation process.
° (p rem iseS, conclusion , P rOOf) = (P s N s G ( N )) From: Solving olympiad geometry without human demonstrations
a Sample b Symt;otlic de:uclfion c Synthetic
« Candidate “auxiliary point” which we want to renem premises iyl i

train LLM to discover:
» Subset of P not appearing in N.

| oykEADH >
* Example: \
« N: HA 1 BC has in its derivation points E, D. @HTEBH'
+ But these do not appear in N itself.  zeDH= zEcB
* Remove E, D from premises, add as extra discovery AT

steps in proof instead.

This results in a training data point with a
discovery step!

13 2025-06-04
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AlphaGeometry: Data

* How was the neural part trained to suggest new points?
* Number of human-written proofs is limited.

» Generated 100 million synthetic data examples:
» Generation of 1 billion random diagrams of geometric objects.
* Derived all relationships between points and lines in diagram.
« Symbolic part searched for all proofs contained in each diagram (reasoning forwards).

* In each proof, check for steps with “additional constructs” appearing in the middle of
reasoning chain. These are e.g. points not in the initial and final states.

* Filtered to remove similarities and duplicates.
* Nine million featured “additional constructs”.

* This is enough to train an LLM from scratch!

2025-06-04
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rot(rot(rot bunny)))

blank represents a blank drawing;

Orlglnal bunny

over d1 d2 superimposes d71 and d2;

beside d1 d2 draws d17 next to d2; USing a pre-trained LLM

above d1 d2 draws d71 above d2; i ?
rot d draws d rotated clockwise by 90°; t d
rot45 d draws d rotated clockwise by 45°; I n S ea "
flip d draws d flipped horizontally.

@@ i - What if we don’t have millions of synthetic

gl

= datapoints?
(2R
beside bunny bunny above bunny bunny  Use a LLM to generate lemmas zero shot for our
favourite proof assistant?
« Common math theories will be in training data
AVTAY intYat * New formalisation in Isabelle/HOL.
Rl
LL& LL& '\5& '\HL\& « Caveat: This benchmark is however online as part

of the QuickSpec benchmarks in Haskell.
beside (beside bunny bunny) bunny #

beside bunny (beside bunny bunny)

15 2025-06-04
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Here are some lemmas about the functions blank, over, beside, above, rot, flip, and rot45 in Isabelle format. Note

that these lemmas have not been proven and use 'sorry' as a placeholder for proofs.

arduino

theory Draw2lLemmas
imports Draw2

begin

lemma blank_over_left:

sorry

lemma blank_over_right:

sorry

lemma over_associative:

sorry

lemma over_commute:

sorry

lemma beside_blank_left:

sorry

lemma beside_blank_right:

sorry

lemma beside_associative:

sorry

lemma beside_commute:

sorry

lemma above_blank_top:

sorry

lemma above_blank_bottom:

sorry

lemma above_associative:

sorry

lemma above_commute:

sorry

lemma rot_rot:

sorry

lemma flip_flip:

sorry

lemma rot45_rot45_rot90:

sorry

lemma rot45_flip_rot45:

sorry

end
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How did GPT-4 do? .

« Many conjectures were false.
* Not huge problem - checked by theorem prover/counter example checker.

» Appear to have internalised some “templates”
* There is an identity element.
 Binary functions are associative and commutative.
* Unary functions are their own identity.
* Binary functions distribute over one another (sometimes).

* Misses some lemmas symbolic system finds:
e over Xxx=X
« Equivalent 2 x 2 grid layouts:

« above (beside x y) (beside z w) = beside (above x z) (above y w)

Exploring Mathematical Conjecturing with Large Language Models. Moa Johansson, Nicholas Smallbone. NeSy
2023, 17th International Workshop on Neural-Symbolic Learning and Reasoning

2025-06-04
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Symbolic vs. Neural Conjecturing e

* Less restricted shapes of lemmas in neural systems.
* QuickSpec it tailored for equalities.
* QuickSpec fails to find conjectures outside its size limit (but given more compute it would).
* rot45 (rot45 (rot45 (rot45 (rot45 (rot45 (rot45 (rot45 x)))))))) = x

* LLMs can use information from function names
 Rotation lemmas - rotate correct number of times (not always though!)

» Suggestions of “extra” auxiliary functions to include.

» Buggy definitions?
* QuickSpec will miss or discover other properties.
* LLM may still suggest “intended” property, even though there is a bug in the function definition.

» Seeking Specifications: The Case for Neuro-Symbolic Specification Synthesis. George Granberry,
Wolfgang Ahrendt, Moa Johansson. Forthcoming in Journal of Symbolic Computation 2025. Preprint:
https://arxiv.org/abs/2504.21061

18 2025-06-04
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Discovering Lemmas by Analogy

- Can we leverage analogies between mathematical domains to suggest conjectures?

» Recall: Symbolic work on templates capturing common lemma patterns.
* Can we learn templates from data?
 But instantiate them symbolically?

» Method should be general: applicable across different mathematical domains.

» Suggest lemmas in a proof assistant: speed up formalisations.
 Proof assistant provides counter-example checking, tactics for proofs.

2025-06-04
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Archive of Formal Proofs -

Isabelle Proof Assistant

 Formalisation in

« Computer Science
The Archive of Formal Proofs is a collection of proof libraries, examples, and larger scientific developments, mechanically

. H checked in the theorem prover Isabelle. It is organized in the way of a scientific journal, is indexed by dblp and has an ISSN:
° Log I C ome 2150-914x. Submissions are refereed and we encourage companion AFP submissions to conference and journal publications. To
cite an entry, please use the preferred citation style.

Archive of Formal Proofs

Topics

° M ath e m atl CS EU—— A development version of the archive is available as well.

¢ 890 entrIeS Submission m
° ~284,000 Iemmas Statistics

2025

About

Language Partitioning for Mission-time Linear Temporal Logic

H . by Zili Wang, Katherine Kosaian and Alec Rosentrater Har 63
« Can we discover this type of '
Compactness Theorem for First-Order Logic Feb 26
I e m m as ? by Sophie Tourret and Lawrence C. Paulson
H

A Proof of Hilbert Basis Theorem and an Extension to Formal Power Series Feb 12
by Benjamin Puyobro, Benoit Ballenghien and Burkhart Wolff
Verification of the CVM algorithm with a New Recursive Analysis Technique Feb 05

by Emin Karayel, Derek Khu, Kuldeep S. Meel, Yong Kiam Tan and Seng Joe Watt

21 https://www.isa-afp.org/ 2025-06-04
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Analogies in Isabelle’s AFP colers

Observation: Statements in proof libraries
often share some structure.

Extract from Isabelle’s AFP - abstract to get

templates.

Smallish number of these are much more i L i R me= e s
common (ElnarSdOttlr AITP 2022) ' Figure 1: Left: Number of lemmas per template, sorted by frequency. Right: Cumulative

percentage of lemmas in the dataset covered by most frequent templates.

Can we train a neural model to suggest Template 7 Tommas
which analogies to make to a new theory? LIIFOEGXY) —HIFX) (7FY) o1l
2 | ?F X =7G (?H X) 566
. . 3 | X =7?F (7G X) 340
* i.e. which templates to suggest. 4 | 7F X = 7F (?G X) 280
5 | X=7F7GX 247
Generate conjectures directly or instantiate S| FIGXNE=HEFXZ)(FYZ) | 28
templates symbolically? 8 |?7FX(2GYZ)=7H(FXY)PFX2Z) | 194
9 | ?F = 7G (?H X) 192
10 | ?7F=7G7HX 184

2025-06-04
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Lemmanaid: Neuro-Symbolic crniuns

Conjecturing

/ Formalization \ Lemmanaid =
theory x Functions, Neural Engine
context J
- datatype a
function f
function g ¢ Templates
- —-———
'lemma 11 : Symbolic Engine
1lemma 12 1 H@ QL
o 22 __ | 5
/\[SLL\\?\T
\q —\L[\J\ L) —‘ N
: I
Conjectures -

Lemmanaid: Neuro-Symbolic Lemma Conjecturing. Yousef Alhessi, Solrun Halla Einarsdattir,
George Granberry, Emily First, Moa Johansson, Sorin Lerner, Nicholas Smallbone. Under review 2025.
https://arxiv.org/abs/2504.04942 2025-06-04
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Results

How does Lemmanaid compare to:

A neural model generating
lemmas directly?

A symbolic system (QuickSpec)

What information should be
included in the prompt?

Beam search (size 4).

Comparison of lemmas
generated matching those in an
(unseen) Isabelle formalisation.
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Lemma Success rate

HOL-train

Method HOL-test AFP-Test Octonions
Deepseek-coder-1.3b

LEMMANAID (types + defs) 37.1% 21.6% 50.0%
LEMMANAID (types) 33.4% 22.5% 56.6%
LEMMANAID (defs) 31.3% 10.4% 38.6%
Neural (types + defs) 25.7% 10.4% 23.7%
Neural (types) 23.6% 13.8% 40.0%
Neural (defs) 21.5% 5.3% 21.1%
Combined 49.3% 30.9% 70.9%
QuickSpec — — 22.8%

2025-06-04
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Conclusion

* Neural and symbolic conjecturing have complementary features.

* Lemmanaid shows how to combine best of both:
» LLM suggests where to do more detailed search.

» Wider range of properties can be found.

« Even getting some lemmas will speed up formalisations in proof assistants.

» Next steps:
» Experiments with other LLMs/proof assistants (computational resources...)

* Apply counter-example checkers and automated proof tools to conjectures.
 User studies.
* Full integration with a proof assistant. Tool in proof engineer’s workflow.

2025-06-04
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