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This is not the future!
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Large language models are amazing. . .

▶ . . . at processing language
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Bold claims

Mathematics is not a language

Claiming otherwise is the same confusion as that between being able to
program, and knowing a programming language (which gave us the
horror that is COBOL). Or between knowing the rules of chess and being
a competent chess player.

▶ Of course there is a mathematical language

▶ . . . with a lot of national dialects
▶ . . . with a lot of field-specific dialects

Mathematics is, at the core, the definition and exploration of new
structures and their properties.
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On LLMs

▶ LLMs learn conditional probability distributions on language

▶ They do not learn abstract theory
▶ They do not learn abstract reasoning
▶ They do not learn calculations (except by memorization)

▶ LLMs can’t handle abstract reasoning

▶ Changing terms changes outcome (A chat with Bard)
▶ Adding unrelated information leads to failure (GSM-Symbolic:

Understanding the Limitations of Mathematical Reasoning in Large
Language Models)

▶ Hallucinations are likely unavoidable (LLMs Will Always Hallucinate,
and We Need to Live With This)

▶ LLMs are essentially reproductive, not creative

LLMs can’t do (new) mathematics!
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On LLMs
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If LLMs (alone) are not the future, what is?
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ChatGPT is not AI

Large Language Models 
ChatGPT

11



ChatGPT is not AI

Deep Learning
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ChatGPT is not AI

Neural Networks
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ChatGPT is not AI

Machine Learning
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The Future Math Ecosystem (Utopia)
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The Formal Mathematics Database

▶ Expressed in symbolic logic

▶ Clear syntax
▶ Clear semantics

▶ Unified

▶ One format (or compatible formats)
▶ Globally consistent

▶ Structured

▶ Different domains
▶ Compositional
▶ Searchable

▶ (Increasingly) comprehensive

▶ “The place to be”
▶ One size fits all (because it’s flexible)

Math 
DB
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The future belongs to hybrid systems

▶ Interactive theorem provers are the main front-end for human
mathematicians

▶ User-friendly syntax and editors
▶ Access to mathematical libraries

▶ Automatic theorem provers boost productivity

▶ . . . e.g. as Hammers for ITPs
▶ . . . supporting theory exploration

▶ Automatic theorem provers perform quality control

▶ Internal consistency
▶ Merge consistency

▶ Machine learning improves the power of automated systems

▶ Proof guidance

▶ LLM-based systems translate to and from symbolic logic

▶ Auto-formalization

15



ATP in the Formal Math Ecosystem

ATP

Proof Assistant 
Assistant

Consistency 
Checking

Proof Search 
Guidance

Proof 
Elaboration

Theory  
Exploration

Auto- 
Formalisation
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Automated Theorem Proving

▶ Controlled language

▶ Typically a well-defined logic (First-order logic, equational logic, HOL,
propositional logic, . . . )

▶ Clear, unambiguous syntax
▶ Clear, unambigous semantics

▶ Sound reasoning framework

▶ E.g. logical calculus
▶ Only explicit premises are used

▶ Explicit proof objects

▶ Verifiable results
▶ Explainable results

17



Automated Theorem Proving: Big Picture

Real World Problem

18



Automated Theorem Proving: Big Picture

Real World Problem

18



Automated Theorem Proving: Big Picture

Real World Problem Formalized Problem

18



Automated Theorem Proving: Big Picture

8X : human(X) ! mortal(X)
8X : philosopher(X) ! human(X)

philosopher(socrates)

?
|=

mortal(socrates)

Real World Problem Formalized Problem
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Opening the Black Box (theoretically)

8X : human(X) ! mortal(X)
8X : philosopher(X) ! human(X)

philosopher(socrates)

?
|=

mortal(socrates)

Real World Problem Formalized Problem

ATP

Proof Search
Proof

Countermodel
Timeout

or

or

19



Opening the Black Box (theoretically)

Clausification

Saturation

Axioms Conjecture

CNFCNF

Proof Extraction

Proof (?)

19



Refutation and Clausification

8
>><
>>:

8X : human(X) ! mortal(X)
8X : philosopher(X) ! human(X)

philosopher(socrates)
¬mortal(socrates)

9
>>=
>>;

8X : human(X) ! mortal(X)
8X : philosopher(X) ! human(X)

philosopher(socrates)
|=

mortal(socrates)

is unsatisfiable

iff

20



Refutation and Clausification

8
>><
>>:

8X : human(X) ! mortal(X)
8X : philosopher(X) ! human(X)

philosopher(socrates)
¬mortal(socrates)

9
>>=
>>;

is unsatisfiable

iff

8
>><
>>:

¬human(X) _ mortal(X)
¬philosopher(X) _ human(X)

philosopher(socrates)
¬mortal(socrates)

9
>>=
>>;

is unsatisfiable
21



Saturating Theorem Proving

▶ Goal: Show unsatisfiability of a set of clauses S
▶ Approach:

▶ Systematically enrich S with clauses derived via inferences from
clauses in S (Saturation)

▶ Optionally: Remove redundant clauses

▶ Outcome:

▶ Derivation of the empty clause □ (explicit witness of unsatisfiability)
▶ Successful saturation (up to redundancy): S is satisfiable
▶ . . . or infinite sequence of derivations

▶ Properties:

▶ Correctness: Only logical consequences are derived
▶ Completeness: Every unsatisfiable S will eventually lead to the

derivation of □

At it’s core, an ATP uncovers inconsistency!

22
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Recalling the (recent) past

ATP

Proof Assistant 
Assistant

Consistency 
Checking

Proof Search 
Guidance

Proof 
Elaboration

Theory  
Exploration

Auto- 
Formalisation

23



Consistency checking

▶ Problem: Large axiomatizations may have bugs

▶ Hidden internal inconsistencies
▶ New merge inconsistencies if corpora are extended/merged

▶ ATPs are excellent at finding inconsistencies

▶ Most modern ATPs prove by contradiction anyways
▶ Otherwise prove A |= ⊥

▶ Automatic tests based on systematic sub-sampling are effective

▶ Uncovered several bugs in OpenCyc
▶ Uncovered some bugs in SUMO
▶ Mizar is (apparently) bug-free (!)

▶ . . . but we found all injected inconsistencies

Automatic consistency checking should become a standard
practice in formalisation workflows!
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At it’s core, an ATP enumerates consequences!

25



Saturating Theorem Proving

▶ Goal: Show unsatisfiability of a set of clauses S
▶ Approach:

▶ Systematically enrich S with clauses derived via inferences from
clauses in S (Saturation)

▶ Optionally: Remove redundant clauses

▶ Outcome:

▶ Derivation of the empty clause □ (explicit witness of unsatisfiability)
▶ Successful saturation (up to redundancy): S is satisfiable
▶ . . . or infinite sequence of derivations

▶ Properties:

▶ Correctness: Only logical consequences are derived
▶ Completeness: Every unsatisfiable S will eventually lead to the

derivation of □

At it’s core, an ATP enumerates consequences!

25



Re-Recalling the (recent) past

ATP

Proof Assistant 
Assistant

Consistency 
Checking

Proof Search 
Guidance

Proof 
Elaboration

Theory  
Exploration

Auto- 
Formalisation
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Automatic theory exploration

▶ Automatically find interesting consequences of a given
axiomatization

▶ Enumerate and test

▶ Saturating theorem prover generates consequences
▶ Critic identifies interesting theorems

▶ Generality
▶ Proof size
▶ “Surprise factor”

▶ Conjecture and prove

▶ Use some approach to generate interesting conjectures
▶ Prover checks them for theorem-hood

▶ Iterate until satisfied

▶ New conjectures are added to the axiomatization
▶ Process restarts

Proposal: Reuse cryptominers to mine theorems!
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Re-Re-Recalling the (recent) past

ATP

Proof Assistant 
Assistant

Consistency 
Checking

Proof Search 
Guidance

Proof 
Elaboration

Theory  
Exploration

Auto- 
Formalisation
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Insert Josef’s talk here
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Proof search guidance

▶ Automated Theorem Provers search for proofs in infinite spaces

▶ Better be careful where you go!

▶ Useful techniques (and we are only just beginning)

▶ Proof mining
▶ Genetic optimization
▶ Strategy selection
▶ Axiom selection
▶ . . .

Significant successes, but it’s harder than we thought!

30
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(Old) News from E

▶ E now supports (monomorphic) HOL

▶ Calculus is theoretically incomplete (e.g. finite unifier sets)
▶ Good performance in practice
▶ One of the strongest provers in recent CASCs

▶ E now supports FOOL/TFX

▶ Allows mixing of (boolean) formulas and terms
▶ Can conveniently encode e.g. some modalities
▶ Calculus is complete (and mostly in preprocessing)

Example?
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TFX example

tff(humtype, type, human: $tType).

tff(typepeter, type, peter: human).

tff(typestephan, type, stephan: human).

tff(normal, axiom, ![X:human, Y:$o]: (says(X,Y) => (Y|~Y))).

tff(wise, axiom, ![X:human, Y:$o]: ((says(X,Y)&wise(X)) => Y)).

tff(peteriswise, axiom, wise(peter)).

tff(stephanis, axiom, wise(stephan)|~wise(stephan)).

tff(truth, axiom, says(stephan, ’E is the best theorem prover’)).

tff(e_is_cool, conjecture, ’E is the best theorem prover’).
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TFX example

tff(humtype, type, human: $tType).

tff(typepeter, type, peter: human).

tff(typestephan, type, stephan: human).

tff(normal, axiom, ![X:human, Y:$o]: (says(X,Y) => (Y|~Y))).

tff(wise, axiom, ![X:human, Y:$o]: ((says(X,Y)&wise(X)) => Y)).

tff(peteriswise, axiom, wise(peter)).

tff(stephanis, axiom, wise(stephan)|~wise(stephan)).

tff(truth, axiom, says(stephan, ’E is the best theorem prover’)).

tff(e_is_cool, conjecture, ’E is the best theorem prover’).

tff(moretruth, axiom,

says(peter, ’E is the best theorem prover’)).
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TFX example

tff(humtype, type, human: $tType).

tff(typepeter, type, peter: human).

tff(typestephan, type, stephan: human).

tff(normal, axiom, ![X:human, Y:$o]: (says(X,Y) => (Y|~Y))).

tff(wise, axiom, ![X:human, Y:$o]: ((says(X,Y)&wise(X)) => Y)).

tff(peteriswise, axiom, wise(peter)).

tff(stephanis, axiom, wise(stephan)|~wise(stephan)).

tff(truth, axiom, says(stephan, ’E is the best theorem prover’)).

tff(e_is_cool, conjecture, ’E is the best theorem prover’).

tff(crowd, axiom,

![X:human]:says(X, ’E is the best theorem prover’)).
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Conclusion

▶ Automated Reasoning and Machine Learning are
complementary in many ways

▶ The main formalism of computer maths will be
symbolic

▶ Deduction will use formal symbolic rules

▶ Machine learning techniques will contribute

▶ Nearest neighbors
▶ Decision trees
▶ Genetic algorithms
▶ Tree-based ANN architectures
▶ Even LLMs

▶ ’E is the best theorem prover’

ATP

Proof Assistant 
Assistant

Consistency 
Checking

Proof Search 
Guidance

Proof 
Elaboration

Theory  
Exploration

Auto- 
Formalisation
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Most Important Message

▶ CADE-30 at Stuttgart in Summer
2025

▶ July 28th—August 2nd, 2025
▶ https://cade-30.info

▶ 9 Workshops

▶ CADE ATP System Competition

▶ Exciting social program

Thanks!
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