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How Do We Automate Math and Science?

+ What is mathematical and scientific thinking/intelligence?

- Pattern-matching, analogy, induction/learning from examples

+ Learning both fuzzy hunches and crisp algos/heuristics/procedures
- Deductive reasoning and proving (btw, computation is reasoning)

- intelligently guided search, exploration and guessing/conjecturing

- Complicated feedback loops and interplays between all these

« Using a lot of previous knowledge - both for induction and deduction
« Examples from physics (Popper?): deduction pushing us to Relativity, QM
» We need to develop such methods on computers

« Are there any large corpora suitable for nontrivial deduction?

« Yes! Large libraries of formal proofs and theories

+ So let’s try to develop strong Al on them!

* In my case done for 25-30 years. Recent overviews:

 Learning Guided Automated Reasoning: A Brief Survey. 2024

« Zar Goertzel's Phd thesis: Learning Inference Guidance in ATP. 2023

* AI4REASON: http://aidreason.org/PR_CORE_SCIENTIFIC_4.pdf
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http://ai4reason.org/PR_CORE_SCIENTIFIC_4.pdf

Quotes: Learning vs. Reasoning vs. Guessing

“C’est par la logique qu’on démontre, c’est par l'intuition qu’on invente.”
(It is by logic that we prove, but by intuition that we discover.)
— Henri Poincaré, Mathematical Definitions and Education.

“Hypothesen sind Netze; nur der fangt, wer auswirft.”
(Hypotheses are nets: only he who casts will catch.)
— Novalis, quoted by Popper — The Logic of Scientific Discovery

Certainly, let us learn proving, but also let us learn guessing.
— G. Polya - Mathematics and Plausible Reasoning

Galileo once said, "Mathematics is the language of Science."” Hence, facing
the same laws of the physical world, alien mathematics must have a good
deal of similarity to ours.

— R. Hamming - Mathematics on a Distant Planet

3/63



Intuition vs Formal Reasoning — Poincaré vs Hilbert

less greot, the | >
Crerwion apostle. |57,
of Hhe vigorovs
exoctress of
logical proof.

Henvi Roincaré, the great [
| French genivs, a strong
A believer in the mportance =
of lhumon intuition.

[Adapted from: Logicomix: An Epic Search for Truth by A. Doxiadis]
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Leibniz’s/Hilbert’'s/Russell’s Dream: Let Us Calculate!

Solve all (math, physics, law, economics, society, ...) problems by
reduction to logic/computation

|, too, cveowed
this won's dveom:
To find the perfect
logical wethod for solving
all problews, from
Logic, all the way up
to Huwon

d +o find o woy of
. ai;oluf’al\{ vight

[

And s0? What
does it fell us, that
you dicn't achieve
"Leibniz's Dream'?

[Adapted from: Logicomix: An Epic Search for Truth by A. Doxiadis]
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A Match Made in Heaven or a Deal with the Devil?

Deduction and Induction
A Match Made in Heaven or a Deal with the Devil?
The
Machine

Stephan Schulz erence g Learning

Engine

[Stephan Schulz’s talk at AITP’16] 6/63


https://aitp-conference.org/2016/slides/StSGuidance.pdf
https://aitp-conference.org/2016/

What is Formal Mathematics and Theorem Proving?

+ 1900s: Mathematics put on formal logic foundations — symbolic logic

+ Culmination of a program by Leibniz/Frege/Russell/Hilbert/Church/...

- ... led also to the rise of computers (Turing/Church, 1930s)

+ ... andrise of Al - Turing’s 1950 paper: Learning Machines, Chess, etc.
+ 1950s: First Al program: Logic Theorist by Newell & Simon

+ Formalization of math (60s): combine formal foundations and computers
- Proof assistants/Interactive theorem provers and their large libraries:

+ Automath (1967), LCF, Mizar, NQTHM, HOL, Coq, Isabelle, ACL2, Lean
- Automated theorem provers - search for proofs automatically:

« Otter, Vampire, E, SPASS, Prover9, CVC4, Z3, Satallax, ...

+ more limited logics: SAT, QBF, SMT, UEQ, ... (DPLL, CDCL, ...)

« TP-motivated PLs: ML, Prolog, (logic programming - Hayes, Kowalski)
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What is Formal Mathematics?

- Formal math (1950/60s): combine formal foundations and the newly
available computers

+ Conceptually very simple:

+ Write all your axioms and theorems so that computer understands them
- Write all your inference rules so that computer understands them

+ Use the computer to check that your proofs follow the rules

- But in practice, it turns out not to be so simple

« Many approaches, still not mainstream, but big breakthroughs recently
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Bird’s Eye View of ITP Systems by T. Hales

HOL Light

Once the clear front-runner, it now shows signs of age. 04 18 built of modular components

HOL Light has an exquisite minimal Do not expect on a foundation of dependent type
design. It has the smallest kernel of any (o understand the inner workings of this system unless  theory. This system has grown one
system. John Harrison is the sole you have been PhD thesis at a time.

Lean

Isabelle

Designed for use with multiple foundational Does this really work? Defying expectations, | can is ambitious, and it will be massive. Do
architectures, Isabelle’s early Metamath seems to function not be fooled by the name.

development featured classical constructions in set ~ shockingly well for those who are happy to “Construction area keep out” signs are
theory. However, live without plumbing. prominently posted on the perimeter fencing.
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F. Wiedijk: Irrationality of +/2 (informal text)

tiny proof from Hardy & Wright, texts collected by F. Wiedijk:

Theorem 43 (Pythagoras’ theorem). /2 is irrational.
The traditional proof ascribed to Pythagoras runs as follows. If v/2

is rational, then the equation
& = 2b? (4.3.1)

is soluble in integers a, b with (a,b) = 1. Hence & is even, and
therefore ais even. If a = 2¢, then 4¢? = 2b?, 2¢? = b2, and b is
also even, contrary to the hypothesis that (a, b) = 1. O
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Irrationality of v/2 (Formal Proof Sketch)

exactly the same text in Mizar syntax:

theorem Th43: :: Pythagoras’ theorem
sqrt 2 is irrational
proof
assume sgrt 2 is rational;
consider a,b such that
4_3_1: a”2 = 2%b"2 and
a,b are relative prime;
a2 is even;
a is even;
consider c¢ such that a = 2xc;
4dxc"2 = 2xb"2;
2+xCc"2 = b"2;
b is even;
thus contradiction;
end;
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Irrationality of /2 in HOL Light

let SQRT_2_IRRATIONAL = prove
(‘~rational (sqrt (&2)) Y,
SIMP_TAC[rational; real_abs; SQRT_POS_LE; REAL_POS] THEN
REWRITE_TAC[NOT_EXISTS_THM] THEN REPEAT GEN_TAC THEN
DISCH_THEN (CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
SUBGOAL_THEN ‘~((&p / &q) pow 2 = sqgrt(&2) pow 2)°
(fun th -> MESON_TAC[th]) THEN
SIMP_TAC[SQRT_POW_2; REAL_POS; REAL_POW_DIV] THEN
ASM_SIMP_TAC[REAL_EQ_LDIV_EQ; REAL_OF_NUM_LT; REAL_POW_LT;
ARITH_RULE ‘0 < g <=> ~(g = 0) ‘] THEN
ASM_MESON_TAC [NSQRT_2; REAL_OF_NUM_POW; REAL_OF_NUM_MUL; REAL_OF_NUM_EQ]);;
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Irrationality of /2 in Isabelle/HOL

&heorem sqrt2_not_rational:
v "sqrt (real 2) ¢ Q"

proof
assume "sqrt (real 2) € Q"
then obtain m n :: nat where
n_nonzero: "n # 0" and sqrt_rat: "|sqrt (real 2)}| = real m / real n"

and lowest_terms: "gcd m n = 1" ..

from n_nonzero and sqrt rat have "real m = |sq

then have "real (m?) = (sqrt (real 2))2? * real
by (auto simp add: power2_eq_square)

also have "(sqrt (real 2))? = real 2" by simp

also have "... * real (m?) = real (2 * n2)" by simp

finally have eq: "m? = 2 * n2"

hence "2 dvd m2?"

with two is prime have dvd m: "2 dvd m" by (rule prime dvd power two)

then obtain k where "m = 2 * k" ..

with eq have "2 * n2? = 22 * k2" by (auto simp add: power2 eq square mult_ac)

hence "n? = 2 * k2" by simp

hence "2 dvd n?"

with two is prime have "2 dvd n" by (rule prime dvd power two)

with dvd m have "2 dvd gcd m n" by (rule gcd greatest)

with lowest terms have "2 dvd 1" by simp

+ thus False by arith

qed

rt (real 2)} * real n" by simp

t
(n?)"
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Irrationality of v/2 in Coq

Theorem irrational_sqrt_2: irrational (sqrt 2%nat).

intros p g H HO; case H.

apply (main_thm (Zabs_nat p)).

replace (Div2.double (g * q)) with (2 * (g * q));
[idtac | unfold Div2.double; ring].

case (eqg_nat_dec (Zabs_nat p * Zabs_nat p) (2 * (g * q))); auto; intros HI.

case (not_nm_INR _ _ Hl); (repeat rewrite mult_INR).

rewrite <- (sqrt_def (INR 2)); auto with real.

rewrite HO; auto with real.

assert (g <> 0%R :> R); auto with real.

field; auto with real; case p; simpl; intros; ring.

Qed.
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Irrationality of /2 in Metamath

$1

$d xy $.

$( The square root of 2 is irrational. $)

sqr2irr $p |- ( sqr ' 2 ) e/ QQ $=
( vx vy c2 csqr cfv cq wnel wcel wn cv cdiv co wceq cn wrex cz cexp
cmulc sqgr2irrlem3 sqgr2irrlem5 biZ2rexa mtbir ccO clt wbr wa wi wb nngtOt
adantr cr axOre ltmuldivt mp3anl nnret zret syl2an mpd ancoms 2re 2pos
sgqrgt0i breg2 mpbii syl5bir cc nncnt mulzer2t syl bregld adantl sylibd
exp rl9.23adv anc2li elnnz syléibr impac rl9.22i2 mto elqg df-nel mpbir )
CDEZFGWDFHZIWEWDAJZBJZKLZMZBNOZAPOZWKWIANOZWLWE CQLCWGCQLRLMZBNOANOABSWIWM
ABNNWEWGTUAUBWIWJAPNWEPHZWIWEFNHZWNWIWNUCWEUDUEZUFWOWNWJIWPWNWIWPBNWNWGNHZW
IWPUGWNWQUFZWIUCWGRLZWFUDUEZWPWRWTUCWHUDUEZWIWQWNWTXAUHZWQWNUFUCWGUDUEZXB
WOXCWNWGUIUJWGUKHZWFUKHZXCXBUGZWQWNUCUKHXDXEXFULUCWGWEUMUNWGUOWEUPUQURUSW
IUCWDUDUEXACUTVAVBWDWHUCUDVCVDVEWQWTWP UHWNWQWSUCWE UDWQWGVEHWSUCMWGVGWGVHV
IVJIVKVLVMVNVOWFVPVQVRVSVTABWDWAUBWDFWBWC $.
$( [8-Jan-02] $)
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Irrationality of /2 in Metamath Proof Explorer

sqr2irr - Metamath Proof Explorer - Chromium
R, sqr2irr - Metama x \0y
(4 € [ us.metamath.org, 2 ZIcIeE

Proof of Theorem sqr2irr

step]  Hyp | Ref Expression

| lsar2irrlem3 wsos| - ~3z € N3y e N (12) =(2- (412))

2 sardilems ool o ((zeNAyeN) = (/) =(=/y) = (=12) =(2-(+12))
B R fore F(@zeNTyeN(/2)=(z/y) o dze NIye N(z129) = 2-(+12)
b L3 F-3zeNIyeN(/)=(2/)

s 2 2R

3 2 0<2

7 56 Fo<(/2)

8 (/) =(=/) = (0<(/Do0<(2/3))
L8 oF (V) =(z/y)»0<(2/v)

10 2F(z€Z—zeR)

11 |io F((zeZAayeN)—zeR)

12 :b(yeN—-yeR)

13 (12 F(z€ZAyeN) —yeR)

14 2h(yeN-0<y)

15 |14 F(zeZAyeN)—0<y)

16 F(zeRAyERA0<Y = (0<z o 0<(2/3)
17 |11 13,15, F(z€ZAyeM—=(0<z00<(z/9)

18 [0.17 F(zeZAyeN) > (V) =(/5) = 0< 2)

19 F(zeZAryeN) o zel)

o [18.10 F(z€ZAyeN) o (/D=(2/9) = (ZELAO<))
b1 (F(zeNo(zeZA0<2)

2 o.21 T (ZEZAyeN) o (/D) =(=/9)— zeN)

B3 2 F(z€E—(FyeN(/'2) =(z/9) > zeN)

b2 |3 F(zeEnIeN/'D) =(z/v) > (zeNATyeN/D) =(=/ V)|
5 | F(@zeZIveN(/)=(=/y)»3zeNIyeN(J/2) =(=/9)
6 |4.25 FodzeZIgeN(/)=(z/y)

27 (/) eQo3zelIy eN(/Y=(=/y)

28 |26, 27 2o (/2 eQ

29 2H (V2 EQ e (/2)eQ

Bo |8 20 (/2 €EQ

Colors of variables: wif s

B BT ST P S S S P

16/63



Today: Computers Checking Large Math Proofs

+  SCI & NEWS

Researchers Find 40,000-Year-Old Figurative
Paintings in Bornean Cave

HOME ~ ASTRONOMY  SPACEEXPLORATION ~ ARCHAEOLOGY ~ PALEONTOLOGY ~ BIOLOGY ~ PHYSICS  MEDICINE

GENETICS

GEOLOGY ~ MORE

LATEST NEWS

Scientists Deliver Formal Proof of
Famous Kepler Conjecture

Jun 16, 2017 by News Staff / Source «Previous | Next»

publishedin  Ap jnternational team of mathematicians led by University of Pittsburgh
Mathematics Professor Thomas Hales has delivered a formal proof of the Kepler
Tagged as conjecture, a famous problem in discrete geometry. The team's paper is

Johannes Kepler  published in the journal Forum of Mathematics, Pi.
Kepler conjecture

Follow
You Might Like

J@EDQO

Researchers
Develop First-
Ever 3D
Numerical Model
of Metting
Snowflake

Innovations cdn.sci-news.

SPHERE Captures Young Exoplanet

Beta Pictoris b Orbiting around Its
tar

Now 13,2018 | Astronomy.

Mirarce eatoni: Newly-Discovered
Cretaceous Bird Lived Among
Dinosaurs, Was Strang Flier

Nov 13,2018 | Paleontlogy

Juno Takes Closer Look at Jupiter's
Magnificent, Swirling Clouds
Nov 13,2018 | Space Exploration

Physicists Solve Structure of
Unusually Complex Form of
Nitrogen

cl Chemisty

Natural Compound Protects.
Hypertensive Rats against Heart
Disease

Now 13, 2018 | Medicine

Inventive Orangutans Make Hook
Tools to Retrieve Foo
Nov12, 2018 | Biology

Researchers Find 40,000-Year-Old
Figurative Paintings in Bornean Cave
Now 12,2018 | Archacology

Hubble Sees Lensing Galaxy Cluster,

pl

onjecture.jpg
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Today’s Applications

fyaN=0 Q A
Six-year journey leads to proof of Feit-Thompson Theorem
October 13,2012 by Rab Kles Hictoso
&
Foatred Los cormeris Popular

Gaia spots a ‘ghost’ galaxy next door © 19

hours ago
reddit
*
Favortes How plants evolved to make ants their
sevants © Nov 12,2018 |
™ Georges Gonthier
Email

Physicists build fractal shape out of

At5:46 p.m. on Sept. 20, Georges Gonthier, principal researcher at Microsoft Research Cambridge, clottrons © Nov 12, 2018

sent a brief email to his colleagues at the Microsoft Research-Inria Joint Centre in Paris. It read, in
full: "This is really the End."

Dark matter "huricane’ offers chance to

" Those five innocuous words heralded the culmination of a project that had consumed more than six
& detect axions © 18 hours ago ® 36
PDI

" years and resulted in the formal proof of the Feit-Thompson Theorem, the first major step of the
classification of finite simple groups.

The theorem, first proved by Walter Feit and John Griggs Thompson in 1963 and also known as the

How to drive a robot on Mars © Nov 12, 2018
0Odd-Order Theorem, states that in mathematical group theory, every finite group of odd order is n =2
solvable.
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Big Example: The Flyspeck project

- Kepler conjecture (1611): The most compact way of stacking balls of the
same size in space is a pyramid.

« Formal proof finished in 2014

+ 20000 lemmas in geometry, analysis, graph theory

« Allofitathttps://code.google.com/p/flyspeck/

« All of it computer-understandable and verified in HOL Light:
 polyhedron s /\ ¢ face_of s ==> polyhedron c
« However, this took 20 — 30 person-years!
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https://code.google.com/p/flyspeck/

Learning vs Reasoning — Alan Turing 1950 — Al

« 1950: Computing machinery and intelligence — Al, Turing test

- “We may hope that machines will eventually compete with men in all
purely intellectual fields.” (regardless of his 1936 undecidability result!)

- last section on Learning Machines:

 “But which are the best ones [fields] to start [learning on] with?”

- “.. Even this is a difficult decision. Many people think that a very abstract
activity, like the playing of chess, would be best.”

« Why not try with math? It is much more (universally?) expressive ...

+ (formal) math as a universal/science-complete game, semantic sweetspot
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History and Motivation for AI/ML/TP

+ Intuition vs Formal Reasoning — Poincaré vs Hilbert, Science & Method

« Turing’s 1950 paper: Learning Machines, learn Chess?, undecidability??
- Lenat, Langley, etc: manually-written heuristics, learn Kepler laws,...

+ Denzinger, Schulz, Goller, Fuchs — late 90’s, ATP-focused:

- Learning from Previous Proof Experience

+ My MSc (1998): Try ILP to learn explainable rules/heuristics from Mizar
« Since: Use large formal math (Big Proof) corpora: Mizar, Isabelle, HOL
- ... to combine/develop symbolic/statistical deductive/inductive ML/TP/AI
+ ... hammer-style methods, feedback loops, internal guidance, ...

+ More details — AGI'18 keynote: https://bit.1ly/3qifhg4

+ Al vs DL: Ben Goertzel’'s Prague talk: https://youtu.be/Zt 2HSTuUGBNS
+ Big Al visions: automate/verify math, science, law, (Leibniz, McCarthy, ..)
« Practical impact: boost today’s large ITP verification projects
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https://bit.ly/3qifhg4
https://youtu.be/Zt2HSTuGBn8

Quick intro: Prove/Learn feedback loop on formal math

- Done on 57880 Mizar Mathematical Library formal math problems in 2019
- Efficient ML-guidance inside the best ATPs like E prover (ENIGMA)

« Training of the ML-guidance is interleaved with proving harder problems

- Ultimately a 70% improvement over the original E strategy:

» ... from 149383 proofs to 25397 proofs (all in 10s CPU - no cheating)

| S |SOM) saMI|SOM! SEMI|SOME SEME|SOMS soMd
solved | 14933 | 16574 20366 | 21564 22839 | 22413 23467 | 22910 283753
8% | +0% | +10.5% +35.8% | +43.8% +52.3% | +49.4% +56.5% | +52.8% +58.4

S+ +0 +4364  +6215 +7774  +8414 | +8407 +8964 +8822  +9274
S— -0 -2723 -782 -1143 -508 -927 -430 -845 -454
| SoMS, SoMp, | SoMy; SeMi
solved 24159 24701 25100 25397
S% +61.1% +64.8% +68.0% +70.0%
S+ +9761 +10063 +10476 +10647
S— -535 -295 -309 -183

« 75% of the Mizar corpus (43414) reached in July 2021 - higher times and
many prove/learn cycles: https://github.com/aidreason/ATP_Proofs
« Details in our Mizar60 paper: https://arxiv.org/abs/2303.06686
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https://doi.org/10.4230/LIPIcs.ITP.2019.34
https://github.com/ai4reason/ATP_Proofs
https://arxiv.org/abs/2303.06686

Can you do this in 4 minutes? (
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https://bit.ly/3C0Lwa8

Can you do this in 4 minutes? (human-written code

theoren 7h31:
for A being Subset of R
fora, b he)nq Test number st a < b & A = RAT (2,b) holds
[.a,b.]
prﬂn

let A be Subset of R™1; :: thesis:
let a, b be real number ; :: thesis

sis.
RT = RAT s Subset of R°1 by wess.iz, rmer:;
= b.[ as Subset of R"1 by romerr

the carrier of R*1 /\ (Cl ab) = Cl a oie
44: CURR c= (CLRT) \'(CL ab) by me rorczs;
thus CUA c= [.a,b.] :: according to ssooie o'set 10 :: thesis

3 :: thesis:

proo
let x be set ; :: according to s
assume x in CLA; :: thesis:
then x in (CLRT) /\ (CL ab) by A2, Ad;
then x in the carrier of 21 /\ (€L ab] by mus;
fance x in [.a.b-1 b thesi.

e [.a,b.] c= CLA :: thesis
roo

Tet x be set according to mskider 3 i thesis:

assume A5: x in [.a,b.] ; :: thesis

then reconsider p ='x 23 "Element of RealSpace by weraic e 13;
y A5, xaneac 1:1;

W7 A5, one 1.1

b by
per cases by A7,
suppose A3 p'< b ;
now ¢ th

let r he real number ; :

reconsider pp = p + r as Elemen( of RealSpace by rernic 1

set pr = min (pp, ((p + b) / 2));

49: min (90, ((p 40} / 2)) <= (b +b) / 2 by mcu o

thesis.

assune A10:
P B+ b/ 20
proof
per cases by xici o.15
suppose nin o, ((p+ ) / 2 thesis
0wl (o o1/ 20 oy L0, v 1 thesis.
suppose min (pp, ((p + b) / 2)) = (p +b) / 2 ; :: thesis:
hence p < min (pp, ((p + b) / 2)) by A8, wex 1226 :: thesis
end;
end;

then consider 0 being rational nusber such that
AL p<

S Q)% min (po((p e b) 7 20) by
o /ey e 2
then min (pp,up HSETTPYS by A9,
then A13: Q < b by A12, xo
min (pp, ((p + b) / 2)) <= pp by xsesc o.17
then A1: (min (pp, ((p + b) / 2))) - p <= pp - p by sesc 19
reconsider P = Q as Element of RealSpace by wermic 1.cer 13, e

P - p < (nin (pp,((p +b) / 2))) - p by AL2, mexs

hen Q in A by A2, AI6, xeooLc oic
hen(= 5alL (por) meets A by ALS, 1a

: thesis
24/63
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Intro2: Search/Check/Learn feedback loop on OEIS

1.2 10°

1-10°

80.000

60,000

Solved OEIS sequences

40,000

20,000

0 I I I I I I I I I I I I I
0 50 100 150 200 250 300 350 400 450 500 550 600 650 700

[teration

Figure 12: Number y of solved OEIS sequences after x iterations
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Search-Verify-Train Positive Feedback Loop (OEIS)

programs

examples

+ Small Turing-complete DSL for our programs, e.g.:
2* = [T)_12 = loop(2 x x,x,1)
x! = TT,_4 ¥ = loop(y x x,x,1)
+ Analogous to our Prove/Learn feedback loops in learning-guided proving
(since 2006 — Machine Learner for Automated Reasoning — MaLARea))

+ However, OEIS allows much faster feedback on symbolic conjecturing
+ 670 iterations and still refuses to plateau - counters RL wisdom?

« Since it interleaves symbolic breakthroughs and statistical learning?

« Cheap: The electricity bill is only $1k-$3k, you can do this at home

- ~4.5M explanations invented: 50+ different characterizations of primes
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Some Invented Explanations for OEIS (

« https://oeis.org/A4578: Expansion of sqrt(8) in base 3:
loop2(((y *y) div (X +y)) +V, ¥, X + X, 2, loop((1 + 2) * x, X, 2)) mod (1 + 2)

« https://oeis.org/A4001: Hofstadter-Conway $10k seq: a(n) =
a(a(n-1)) + a(n-a(n-1)) with a(1) = a(2) = 1:
loop(push(loop(pop(x), y-x,pop(x)),x) + loop(pop(x), x-1, x), x - 1, 1)

* https://oeis.org/A40: prime numbers:

2 + compr((loop(x * y, X, 2) + Xx) mod (2 + x), X)
 https://oeis.org/A30184: Expand n(q) * n(g°) * n(q®) * n(q'®) in

powers of g (elliptic curves):

loop(push(loop((pop(x) * loop(if (pop(x) mod y) <= 0 then (x - loop(if (x

mod (1 + (y +y))) <= 0 then (x + x) else x, 2, y)) else x, y, push(0, y))) + x,

y, push(0, x)), x) divy, x, 1)

« https://oeis.org/A51023: Wolfram’s $30k Rule 30 automaton:
loop2(y, y div 2, x, 1, loop2(loop2((((y div (0 - (2 + 2))) mod 2) + X) + X, ¥
div2,y, 1, loop2(((y mod 2) + X) + X,y div2,y, 1,x)),2 +V, x,0, 1)) mod 2

. https://oeis.org/A2580: v/2 Hales’s blog: https://t.ly/tHsld
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https://github.com/Anon52MI4/oeis-alien
https://oeis.org/A4578
https://oeis.org/A4001
https://oeis.org/A40
https://oeis.org/A30184
https://oeis.org/A51023
https://oeis.org/A2580
https://t.ly/tHs1d
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Serious Math Conjecturing — Elliptic Curves

« Sander Dahmen: Here are some OEIS labels related to elliptic curves
(and hence modular forms), ordered by difficulty. It would be interesting
to know if some of these appear in your results.

- A006571 A030187 A030184 A128263 A187096 A251913

- JU: We have the first three:

A30187: Expansion of 7(q) * n(q?) * n(q")
A30184: Expansion of (q) * n(q°) = n(q°)

» A6571 : loop((push(loop((pop(x) * loop(if (pop(x) mod y) <= 0 then ((if (y mod

loop(1 + (X + Xx), 2, 2)) <= 0 then (x - y) else x) - y) else x, y, push(0, y))) + X, Y,

push(0, x)), x) *2) divy, x, 1)

A30187 : loop(push(loop((pop(x) * loop(if (pop(x) mod y) <= 0 then (x - loop(if (x

mod (((2 +y) *y) - 1)) <= 0 then (x + X) else x, 2, y)) else x, y, push(0, y))) + X, Y,

push(0, x)), x) div y, x, 1)

» A30184 : loop(push(loop((pop(x) * loop(if (pop(x) mod y) <= 0 then (x - loop(if (x

mod (1 + (y +Y))) <= 0 then (x + X) else x, 2, y)) else x, y, push(0, y))) + X, Y,

push(0, x)), x) divy, x, 1)

AB571: Expansion of g * Productc~—1(1 — )2 * (
xn(q"
*n(q

11*k)

11—
) in powers of q.
)

'8 in powers of g.
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Encoding OEIS for Language Models

- Input sequence is a series of digits

+ Separated by an additional token # at the integer boundaries
+ Output program is a sequence of tokens in Polish notation

- Parsed by us to a syntax tree and translatable to Python

- Example: a(n) = n!

BRRREE
-

— —
III@IIII@IIIOF P
TTTTANAANANN
KK

loop PR /
/-\ 2~ J S
/ /
def f(X): /
(). @
for y in range(1, X+1): /

_-
2
X = X*y // .7

=== -~ -
return x // P
—_— //
T~ L _--
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Search-Verify-Train Feedback Loop for OEIS

- search phase: LM synthesizes many programs for input sequences

« typically 240 candidate programs for each input using beam search

+ 84M programs for OEIS in several hours on the GPU (depends on model)
« checking phase: the millions of programs efficiently evaluated

« resource limits used, fast indexing structures for OEIS sequences

« check if the program generates any OEIS sequence (hindsight replay)

+ we keep the shortest (Occams’s razor) and fastest program (efficiency)

- from iter. 501, we also keep the program with the best speed/length ratio

+ learning phase: LM trains to translate the “solved” OEIS sequences into
the best program(s) generating them

- from iter. 336: train LMs to transform (generalization, optimization)
- our learned version of human-coded methods like ILP and compilation
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Search-Verify-Train Feedback Loop

« The weights of the LM either trained from scratch or continuously updated
« This yields new minds vs seasoned experts (who have seen it all)
- We also train experts on varied selections of data, in varied ways
+ Orthogonality: common in theorem proving - different experts help
+ Each iteration of the self-learning loop discovers more solutions

« ... also improves/optimizes existing solutions

« The alien mathematician thus self-evolves

« Occam’s razor and efficiency are used for its weak supervision

+ Quite different from today’s LLM approaches:

« LLMs do one-time training on everything human-invented

+ QOur alien instead starts from zero knowledge

- Evolves increasingly nontrivial skills, may diverge from humans

« Turing complete (unlike Go/Chess) — arbitrary complex algorithms
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Sample of Learning Approaches

+ neural networks (statistical ML, old!) — backprop, SGD, deep learning,
convolutional, recurrent, attention/transformers, tree NNs, graph NNs, etc.

- decision trees, random forests, gradient boosted trees — find good
classifying attributes (and/or their values); more explainable, often SoTA

- support vector machines — find a good classifying hyperplane, possibly
after non-linear transformation of the data (kernel methods)

- k-nearest neighbor — find the k nearest neighbors to the query, combine
their solutions, good for online learning (important in ITP)

- naive Bayes — compute probabilities of outcomes assuming complete
(naive) independence of characterizing features, i.e., just multiplying
probabilities: P(y|x) = P(x1|y) = P(x2|y) * ... = P(Xp|y) = P(y)/P(X)

- inductive logic programming (symbolic ML) — generate logical
explanation (program) from a set of ground clauses by generalization

+ genetic algorithms — evolve large population by crossover and mutation

« various combinations of statistical and symbolic approaches

 supervised, unsupervised, online/incremental, reinforcement

learning (actions, explore/exploit, cumulative reward)
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Learning — Features and Data Preprocessing

- Extremely important - if irrelevant, there is no way to learn the function
from input to output (“garbage in garbage out”)

- Feature discovery/engineering — a big field, a bit overshadowed by DL

- Deep Learning (DL) — deep neural nets that automatically find important
high-level features for a task, can be structured (tree/graph NNs)

- Data Augmentation and Selection — how do we generate/select
more/better data to learn on?

- Latent Semantics, PCA, dimensionality reduction: use linear algebra
(eigenvector decomposition) to discover the most similar features, make
approximate equivalence classes from them; or just use hashing

- word2vec and related/neural methods: represent words/sentences by
embeddings (in a high-dimensional real vector space) learned by
predicting the next word on a large corpus like Wikipedia

- math and theorem proving: syntactic/semantic/computational
patterns/abstractions/programs

+ How do we represent math data (formulas, proofs, models) in our mind?
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Using Learning to Guide Theorem Proving

+ high-level: pre-select lemmas from a large library, give them to ATPs

« high-level: pre-select a good ATP strategy/portfolio for a problem

+ low-level: guide every inference step of ATPs (tableau, superposition)

- low-level: guide every kernel step of LCF-style ITPs

- mid-level: guide application of tactics in ITPs, learn new tactics

- mid-level: invent suitable strategies/procedures for classes of problems
- mid-level: invent suitable conjectures for a problem

- mid-level: invent suitable concepts/models for problems/theories

- proof sketches: explore stronger/related theories to get proof ideas

« theory exploration: develop interesting theories by conjecturing/proving
- feedback loops: (dis)prove, learn from it, (dis)prove more, learn more, ...
- autoformalization: (semi-)automate translation from IXTgX to formal
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Al/TP Examples and Demos

+ ENIGMA/hammer proofs of Pythagoras : https://bit.ly/2MVPANn7
(more at http://grid0l.ciirc.cvut.cz/~mptp/enigma-ex.pdf) and
simplified Carmichael https://bit.1y/30GBdRz,

+ 3-phase ENIGMA: https://bit.1ly/3C0Lwa8,
https://bit.ly/3BWgR6K

+ Long trig proof from 1k axioms: https://bit.1ly/2YZ00gX

- Extreme Deepire/AVATAR proof of eg = w*” nttps://bit.ly/3NedWNX

« Hammering demo: http://grid0l.ciirc.cvut.cz/~mptp/out4.ogv

« TacticToe on HOL4:
http://grid0l.ciirc.cvut.cz/~mptp/tactictoe_demo.ogv

« TacticToe longer: https://www.youtube.com/watch?v=B0O4Y8ynwI6Y

« Tactician for Coq:
https://blaauwbroek.eu/papers/cicm2020/demo.mp4,
https://cog-tactician.github.io/demo.html

« Inf2formal over HOL Light:
http://grid0l.ciirc.cvut.cz/~mptp/demo.ogv

« QSynt: Al rediscovers the Fermat primality test:

https://www.youtube.com/watch?v=240ejR9wsXs
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Today’s AI-ATP systems (x-Hammers)

Current Goal First Order Problem
/\ /\A
v \/

Proof Assistant ITP Proof *Hammer ATP Proof ATP

How much can it do?
+ Mizar / MML — MizAR
+ Isabelle (Auth, Jinja) — Sledgehammer
« Flyspeck (including core HOL Light and Multivariate) — HOL(y)Hammer
« HOL4 (Gauthier and Kaliszyk)
« CogHammer (Czajka and Kaliszyk) - about 40% on Coq standard library
~ 40-45% success by 2016, 60% on Mizar as of 2021
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High-level feedback loops — MALARea, ATPBoost

» Machine Learner for Autom. Reasoning (2006) — infinite hammering

- feedback loop interleaving ATP with learning premise selection

both syntactic and semantic features for characterizing formulas:
evolving set of finite (counter)models in which formulas evaluated

+ winning AI/ATP benchmarks (MPTPChallenge, CASC 08/12/13/18/20)
- ATPBoost (Piotrowski) - recent incarnation focusing on multiple proofs

v

initial settings

solve problems |
(ATP)
v s x °
N, o
<all proved? —» stop _ _
Zipperpi] Leo-111 |[ATPBoos] GKC | Leo-III
" Trb2o LT1s m tmosi | imeis
v Solvedioo 1699 1000 14131000 12370000 49300 134
Solutions 1699 16%| 1413 10| 1237 12%] 493 « 134

learn
from proofs (ML)

premise
selections (ML)
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Number of proved theorems
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Number of all found proofs

Prove-and-learn loop on MPTP2078 data set
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Various Improvements and Additions

+ Model-based features for semantic similarity [IJCAR’08]
+ Features encoding term matching/unification [IJCAI'15]
+ Various learners: weighted k-NN, boosted trees (LightGBM,XGBoost)

« Matching and transferring concepts and theorems between libraries
(Gauthier & Kaliszyk) — allows “superhammers”, conjecturing, and more

« Lemmatization — extracting and considering millions of low-level lemmas
« LSI, word2vec, neural models, definitional embeddings (with Google)

« Learning in binary setting from many alternative proofs

- Negative/positive mining (ATPBoost - Piotrowski & JU, 2018)

- Stateful neural methods: RNNs and Transformers (Piotrowski & JU, 2020)
(smooth transition from fact selection to conjecturing — Jakubuv & JU 2020)

« Currently strongest: Name-independent graph neural nets (Olsak, 2020)
(generalize very well to new terminology/lemmas)
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Low-level: Statistical Guidance of Connection Tableau

- learn guidance of every clausal inference in connection tableau
(leanCoP)

- set of first-order clauses, extension and reduction steps

- proof finished when all branches are closed

- alot of nondeterminism, requires backtracking

« lterative deepening used in leanCoP to ensure completeness

« good for learning — the tableau compactly represents the proof state

Clauses: Closed Connection Tableau: P(a)

ci: P(x)

c: R(x,y) v =P(x) v Q(y) R(a, b) /ﬁF“'(a)\ Q(b)

cs: S(x) v —Q(b) / N\

s =S(x) v ~Q(x) —R(a,b) Q(b) S(b)  —Q(b)
cs: —Q(x) v —R(a, x) /7 N\ /7 N\

s : —R(a,x) v Q(x) —Q(b) —R(a,b) —S(b) -Q(b)
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Statistical Guidance of Connection Tableau — rICoP

+ 2018: strong learners via C interface to OCAML (boosted trees)
« remove iterative deepening, the prover can go arbitrarily deep
+ added Monte-Carlo Tree Search (MCTS) (inspired by AlphaGo/Zero)
+ MCTS search nodes are sequences of clause application
+ a good heuristic to explore new vs exploit good nodes:
UCT (i) = % feopy N

i i

(UCT - Kocsis, Szepesvari 2006)

« learning both policy (p) (clause selection) and value (w) (state evaluation)
- clauses represented not by names but also by features (generalize!)

« binary learning setting used: | proof state | clause features |

- mostly term walks of length 3 (trigrams), hashed into small integers

« many iterations of proving and learning

+ More recently also with GNNs (Olsak, Rawson, Zombori, ...)
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Statistical Guidance of Connection Tableau — rICoP

+ On 32k Mizar40 problems using 200k inference limit
+ nonlearning CoPs:

System leanCoP  bare prover rlCoP no policy/value (UCT only)
Training problems proved 10438 4184 7348

Testing problems proved 1143 431 804

Total problems proved 11581 4615 8152

+ rICoP with policy/value after 5 proving/learning iters on the training data
+ 1624/1143 = 42.1% improvement over leanCoP on the testing problems

lteration 1 2 3 4 5 6 7 8

Training proved 12325 13749 14155 14363 14403 14431 14342 14498
Testing proved 1354 1519 1566 1595 1624 1586 1582 1591
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ENIGMA (2017): Guiding the Best ATPs like E Prover

+ The proof state are two large heaps of clauses processed/unprocessed
« learn on E’s proof search traces, put classifier in E
- positive examples: clauses (lemmas) used in the proof
+ negative examples: clauses (lemmas) not used in the proof
« 2021 multi-phase architecture (combination of different methods):
« fast gradient-boosted decision trees (GBDTSs) used in 2 ways

« fast logic-aware graph neural network (GNN - Olsak) run on a GPU server
* logic-based subsumption using fast indexing (discrimination trees - Schulz)

« The GNN scores many clauses (context/query) together in a large graph
« Sparse - vastly more efficient than transformers (~100k symbols)

+ 2021: leapfrogging and Split&Merge:

- aiming at learning reasoning/algo components
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Feedback prove/learn loop for ENIGMA on Mizar data

Done on 57880 Mizar problems recently
Serious ML-guidance breakthrough applied to the best ATPs
Ultimately a 70% improvement over the original strategy in 2019

From 14933 proofs to 25397 proofs (all 10s CPU - no cheating)

Went up to 40k in more iterations and 60s time in 2020

75% of the Mizar corpus reached in July 2021 - higher times and many
runs: https://github.com/aidreason/ATP_Proofs

S

|SOM] SOMI|SOM] SOM|SOME seMz|SOM] SaM

solved | 14933

%
S+
S—

+0%
+0
-0

16574 20366 21564 22839 22413 23467 22910 23753
+10.5% +35.8% | +43.8% +52.3% | +49.4% +56.5% | +52.8% +58.4
+4364  +6215 +7774  +8414 | +8407 +8964 +8822  +9274
-2723 -782 -1143 -508 -927 -430 -845 -454
| sSoMS, SoMp, | SoMy; SeMi

solved 24159 24701 25100 25397

S% +61.1% +64.8% +68.0% +70.0%

S+ +9761 +10063 +10476 +10647

S— -535 -295 -309 -183
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ENIGMA Anonymous: Learning from patterns only

« The GNN and GBDTs only learn from formula structure, not symbols
 Not from symbols like + and = as Transformer & Co.

 E.g., learning on additive groups thus transfers to multiplicative groups
+ Evaluation of old-Mizar ENIGMA on 242 new Mizar articles:

+ 13370 new theorems, > 50% of them with new terminology:

+ The 3-phase ENIGMA is 58% better on them than unguided E

« While 53.5% on the old Mizar (where this ENIGMA was trained)

+ Generalizing, analogizing and transfer abilities unusual in the large
transformer models
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More Low-Level Guidance of Various Creatures

+ Neural (TNN) clause selection in Vampire (Deepire - M. Suda):
Learn from clause derivation trees only
Not looking at what it says, just who its ancestors were.

« Fast and surprisingly good: Extreme Deepire/AVATAR proof of

€0 = w“’“" https://bit.ly/3NedWNX

+ 1193-long proof takes about the same resources as one GPT-3/4 reply
+ GNN-based guidance in iProver (Chvalovsky, Korovin, Piepenbrock)

- New (dynamic data) way of training

« Led to doubled real-time performance of iProver’s instantiation mode

+ CVC5: neural & GBDT instantiation guidance (Piepenbrock, Jakubuv)

- very recently 20% improvement on Mizar

+ Hints method for Otter/Prover9 (Veroff):

« boost inferences on clauses that match a lemma used in a related proof
+ symbolic ML - can be combined with statistical - proof completion vectors
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TacticToe: mid-level ITP Guidance (Gauthier'17,18

« TTT learns from human and its own tactical HOL4 proofs
+ No translation or reconstruction needed - native tactical proofs
+ Fully integrated with HOL4 and easy to use
- Similar to riCoP: policy/value learning for applying tactics in a state
« Demo: nttp://grid0l.ciirc.cvut.cz/~mptp/tactictoe_demo.ogv
- However much more technically challenging - a real breakthrough:

« tactic and goal state recording

« tactic argument abstraction

+ absolutization of tactic names

 nontrivial evaluation issues

« these issues have often more impact than adding better learners

+ policy: which tactic/parameters to choose for a current goal?
- value: how likely is this proof state succeed?

+ 66% of HOL4 toplevel proofs in 60s (better than a hammer!)
- similar followup work for HOL Light (Google), Coq, Lean, ...
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Tactician: Tactical Guidance for Coq (Blaauwbroek’20)

- Tactical guidance of Coq proofs
« Technically very challenging to do right - the Coq internals again nontrivial

+ 39.3% on the Coq standard library, 56.7% in a union with CogHammer
(orthogonal)

« Fast approximate hashing for k-NN makes a lot of difference

+ Fast re-learning more important than “cooler”/slower learners

Fully integrated with Coq, should work for any development

User friendly, installation friendly, integration/maintenance friendly

« Demo: https://blaauwbroek.eu/papers/cicm2020/demo.mp4,
https://cog-tactician.github.io/demo.html

« Took several years, but could become a common tool for Coq formalizers
» Recently GNNs added, a major comparison of k-NN, GNN and LMs
(Graph2Tac - https://arxiv.org/abs/2401.02949)
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Neural Autoformalization (Wang et al., 2018)

« generate about 1M Latex - Mizar pairs synthetically (quite advanced)
- train neural seg-to-seq translation models (Luong — NMT)

- evaluate on about 100k examples

« many architectures tested, some work much better than others

- very important latest invention: attention in the seg-to-seq models

+ more data crucial for neural training

- Recent addition: unsupervised MT methods (Lample et all 2018) — no
need for aligned data, improving a lot!

+ Type-checking not yet internal (boosting well-typed data externally)
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Neural Autoformalization data

Rendered IATEX fXcYcZthenXc Z
Mizar
X c=Y & Y c= Z implies X c= Z;
Tokenized Mizar
X c=Y & Y c= Z implies X c= Z ;
IATEX
If $X \subseteqg Y \subseteqg Z$, then $X \subseteq Z$.
Tokenized IATEX
If $ X \subseteqg Y \subseteqg Z $ , then $ X \subseteq Z $ .
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Neural Fun — Performance after Some Training

Rendered
ETEX
Input IATEX

Correct

Snapshot-
1000
Snapshot-
2000
Snapshot-
3000
Snapshot-
4000
Snapshot-
5000
Snapshot-
6000
Snapshot-
7000

Suppose sg is convergent and s; is convergent . Then lim(sg+s7) =
lim sg+ lim s7
Suppose $ { s _ { 8 } } $ is convergent and $ { s _ { 7 } }
$ is convergent . Then $ \mathop { \rm lim } ( { s _ { 8 }
} {4+ 3} {s_ {71} ) \mathrel { = } \mathop { \rm lim }

{s_ {81} } {+} \mathop { \rm 1im } { s _ { 7} } $
seqgl is convergent & seqg2 is convergent implies lim ( seql
+ seqgq2 ) = ( lim seql ) + ( lim seqg2 ) ;

x in dom f implies ( x » y ) » (£ | (x| (y | (y | y)
)y )y =(x [ (y I (y |l CylLy)))))i

seq is summable implies seqg is summable ;

seq is convergent & lim seq = Oc implies seq = seq ;

seq is convergent & lim seq = lim seq implies seqgl + seq2
is convergent ;

seql is convergent & lim seqg2 = lim seqg2 implies lim_inf
seql = lim_inf seqg2 ;

seq is convergent & lim seqg = lim seq implies seql + seqg2
is convergent ;

seq 1s convergent & seq9 is convergent implies
lim ( seq + seq9 ) = ( lim seq ) + ( lim seq9 ) ;
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More on Conjecturing in Mathematics

- Targeted: generate intermediate lemmas (cuts) for a harder conjecture
« Unrestricted (theory exploration):

+ Creation of interesting conjectures based on the previous theory

« One of the most interesting activities mathematicians do (how?)

« Higher-level Al/reasoning task - can we learn it?

- If so, we have solved math:

s ... just (recursively) divide Fermat into many subtasks ...

- ... and conquer (I mean: hammer) them away
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Conjecturing and Proof Synthesis by Neural Methods

- Karpathy’15 - RNN experiments with generating fake Math over Stacks
- | have tried to use that for formal math in 2016 but it looked weak

« GPT (-2,3) looks stronger

+ Renewed experiments in 2020 (JU & J. Jakubuv: First Neural
Conjecturing Datasets and Experiments. CICM’20) on:

 All Mizar articles, stripped of comments and concatenated together (78M)

« Articles with added context/disambiguation (156M) (types, names, thesis)

« TPTP proofs of 28271 Mizar/MPTP theorems by E/ENIGMA (658M)

« Just the conjecture and premises needed for the 28271 proofs printed in
prefix notation

+ Quite interesting results, server for Mizar authors
+ Quickly taken up by others on HOL, Isabelle, MetaMath ...

+ Caveat: Watch for "model pretraining" on undisclosed corpora - often
GitHub/math repos that may contain (translations of) the testing data
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Can you find the flaw(s) in this fake GPT-2 proof?

@ Applications Places & ® ®31471GHz ¢ Wed 1502 Wed 15:02
File Edit Options Buffers Tools Index Mizar Hide/Show Help
RR B > “Undo L B
:: generated theorem with "proof"
theorem Th23: :: STIRL2_1:23
for X, Y being finite set st not X is empty & X c=Y
& card X =card Y holds X =Y
proof
let X, Y be finite set ;
:: thesis: not X is empty & X c=Y & card X = card Y implies X =Y
assume that
Al: not X is empty and A2: Xc=Y and A3: card X =card Y ;
i thesis: X =Y
card (Y \ X) = (card Y) - (card X) by A1, A3, CARD_2:44;
then A4: card (Y \ X) = ((card Y) - 1) - (card X) by CARD_1:30;
X =Y\XbyA2, A3, Th22;
hence X =Y by A4, XBOOLE_0:def_10;
:: thesis: verum
end;

-i--—- card_tst.miz 99% L2131 (Mizar Errors:13 hs Undo-Tree) |

Figure: Fake full declarative GPT-2 “Mizar proof” - typechecks!
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Gibberish Generator Provoking Algebraists

<« C & mailgoogl VHcLqBhDAXBpVCmNMshzDrCQSSmsB s o

&
= M Gmail Q  search mail S ® ® i

N

& 0 ¢ Q@ =» 31

Michael Kinyon <mkkinyon@gmail.com> Thu, May 28, 5:41 PM Y
to David, Ales, Petr, Bob, Jan, Karel, me ~

(&

Yes, this is a standard exercise in undergraduate first courses in abstract algebra. The proof is easy. If | were giving way too much of a hint to students, | would
say something like this: fix a in G such that G/N is generated by the coset aN. Every element of G can be written in the form ai n for integer i and some n in N.
Multiply two such elements together and check that they commute.

o

So your conjecturer (that's a difficult word to say) did a good job.

+

David Stanovsky <david.stanovsky@gmail.com> Thu,May 28, 5:42 PM Y 4 H
to me, Michael, Ales, Petr, Bob, Jan, Karel ~

¢

Hi, that's a two-line prool, although certainly not an obvious one (a
classical exercise at the beginning of a group theory course):

Denote aN the generator of G/N, hence G is a union of all a"iN, i in Z.
Take g.h in G, write them as g=atix, h=a%jy with xy in N, and
calculate gh=atixa®jy=a®{i+j}xy=hg, because x,y are central.
Finiteness makes no simplification of the proof. Th18 you mention
holds for infinite groups if you replace Nat be integers. It is being
used in my argument,

He Bro quue@ +

Signin
inwill
si

into Xt me & anan a0

Figure: First successes in making mathematicians comment on Al.
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A correct conjecture that was too hard to prove

Kinyon and Stanovsky (algebraists) confirmed that this cut is valid:

theorem Thl0: :: GROUPP_1:10

for G being finite Group

for N being normal Subgroup of G st

N is Subgroup of center G & G ./. N is cyclic
holds G is commutative

The generalization that avoids finiteness:

for G being Group

for N being normal Subgroup of G st

N is Subgroup of center G & G ./. N is cyclic
holds G is commutative

58/63



More cuts

« In total 33100 in this experiment
+ Ca 9k proved by trained ENIGMA
« Some are clearly false, yet quite natural to ask:

theorem :: SINCOS10:17

sec 1s increasing on [0, pi/2)
leads to conjecturing the following:

Every differentiable function is increasing.
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Caveats, Comments and Dark Sides of ML

- Training on testing data — used to be a big taboo
+ Useful as a sanity check: if the trained predictor doesn’t predict well on
the training data, there is a problem (garbage in garbage out)

+ For simple ML systems training on testing data is less troublesome (e.g.
naive Bayes with few features)

- Even for the GNN its performance on train/test split is similar

« For large systems like LLMSs, this may however be a big issue -
memorization vs generalization

- "pretraining": e.g. word embeddings useful for many NLP applications

« capture a lot of "latent semantics" of words, similar for pretrained LLMs

+ However, they can also store/memorize any dataset they have seen on
internet/GitHub

- E.g. formal proofs written in Lean instead of Coq, Mizar instead of
Isabelle, HOL4 instead of HOL light

« Proofwiki/Arxiv versions of the proofs and the important lemmas in them
(later used e.g. for conjecturing in the formal setting)
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Caveats, Comments and Dark Sides of ML

« Use of synthetic data
+ Can be very useful

« In general, there is a large field of data augmentation related to
unsupervised and semi supervised learning

- e.g., try to generate many related easier problems, solve those, and learn
on them to attack a harder problem

+ a major issue is training and testing on an oversaturated dataset:

« even though the test data are formally disjoint from the training set, they
can be very close to many training examples

« the synthetic data (and their parameterized generators) may in various
hidden/clandestine ways target the test set

- a serious issue: unreleased synthetic data/generators are today used to
claim major "breakthroughs"
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Caveats, Comments and Dark Sides of ML

« Leaks from the future:

« chronological eval vs random split where the split contains the names of
lemmas not yet seen in the chronological evaluation

+ chronological evaluation is obviously the best but many ML systems are
not easily updatable

- weaker learners like naive Bayes behaved similarly under the random
split and in the chronological evaluation

- anonymous settings (typically not LLMs) largely mitigate this - eg the
symbol independent GNN, or the binary setting when using GBDTs with
anonymous features

+ in nonanonymous settings, in-context learning can perhaps be used, this
however so far requires a lot of resources

- also, there could be just a single evaluation - e.g. on new articles in a
new version of the library (our Mizar 60 eval quite surprising)
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Thanks and Advertisement

+ Thanks for your attention!

« To push Al methods in math and theorem proving, we organize:
- AITP — Artificial Intelligence and Theorem Proving

+ September 2025, Aussois, France, aitp-conference.org

« ATP/ITP/Math vs Al/ML/AGI people, Computational linguists

« Discussion-oriented and experimental

63/63


aitp-conference.org

	Quick Intro
	Motivation, Learning vs. Reasoning

