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Abstract

Interactive Theorem Proving (ITP) can be seen as a process where a human user steers an Automated
Theorem Prover (ATP) to certify proof steps sufficient for the theorem under consideration. Steering is
achieved by various languages which are connected by logically correct translation mechanisms. In the
Naproche system, these languages contain the ordinary language of mathematics, the controlled natural
language ForTheL, enriched first-order logic, and the ATP input language TPTP.
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Detailed analysis of Lemma 48
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A mathematical view on the text

Textbook-like introduction of prime
numbers

- pretyping of variables p; d

- definition of prime

- prime number as a linguistic alter-
native

- illustrative lemmas 45-47 whose
proofs are �left to the reader�

- Lemma 48 is an interesting result
with the proof hint �by induction�



The typesetting view

Readable output generated from
LATEX by pdfLaTeX

- simple LATEX

- forthel environments for strictly
formal text

- ordinary LATEX environments for def-
initions, lemmas and proofs

- LATEX file ( . . . ftl.org) is the
input to the Naproche system
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The proof-checking view

Textbook-like introduction of prime
numbers

- Lemma 48 has a short proof �by
induction�

- Proof is carried out by the E Auto-
mated Theorem Prover (ATP)

- What is the prover task given to E?



Inspecting the interaction of Naproche and E in Isabelle: dump on



First-order translation and translation into TPTP prover format



First-order translation and translation into TPTP prover format



Naproche's input to E

. . .

fof(m_,hypothesis,( ! [W0] : (aNaturalNumber(W0) => (isPrime(W0)
<=> ((( ~ (W0 = sz0)) & ( ~ (W0 = sz1))) & ( ! [W1] :
((aNaturalNumber(W1) & doDivides(W1,W0)) => ((W1 = sz1) | (W1 =
W0))))))))).

fof(m_,hypothesis,isPrime(sz2)).

fof(m_,hypothesis,( ! [W0] : (((aNaturalNumber(W0) & isPrime(W0))
& isEven(W0)) => (W0 = sz2)))).

fof(m_,hypothesis,isPrime(sz3)).

fof(m__,conjecture,( ! [W0] : ((aNaturalNumber(W0) & (( ~ (W0 =
sz0)) & ( ~ (W0 = sz1)))) => (( ! [W1] : ((aNaturalNumber(W1) &
(( ~ (W1 = sz0)) & ( ~ (W1 = sz1)))) => (iLess(W1,W0) => ( ? [W2]
: ((aNaturalNumber(W2) & doDivides(W2,W1)) & isPrime(W2))))))
=> ( ? [W1] : ((aNaturalNumber(W1) & doDivides(W1,W0)) &
isPrime(W1))))))).

�original�

Definition 1. p is prime iff p is nontrivial and
for every divisor d of p d=1 or d= p.

Lemma 2. 2 is prime.

Lemma 3. Every even prime number is equal
to 2.

Lemma 4. 3 is prime.

Lemma 5. Every nontrivial n has a prime
divisor.



The �by induction� proof tactic



Induction in TPTP: iLess as �



Naproche's input to E

. . .

fof(m_,hypothesis,( ! [W0] : (aNaturalNumber(W0) => (isPrime(W0)
<=> ((( ~ (W0 = sz0)) & ( ~ (W0 = sz1))) & ( ! [W1] :
((aNaturalNumber(W1) & doDivides(W1,W0)) => ((W1 = sz1) | (W1 =
W0))))))))).

fof(m_,hypothesis,isPrime(sz2)).

fof(m_,hypothesis,( ! [W0] : (((aNaturalNumber(W0) & isPrime(W0))
& isEven(W0)) => (W0 = sz2)))).

fof(m_,hypothesis,isPrime(sz3)).

fof(m__,conjecture,( ! [W0] : ((aNaturalNumber(W0) & (( ~ (W0 =
sz0)) & ( ~ (W0 = sz1)))) => (( ! [W1] : ((aNaturalNumber(W1) &
(( ~ (W1 = sz0)) & ( ~ (W1 = sz1)))) => (iLess(W1,W0) => ( ? [W2]
: ((aNaturalNumber(W2) & doDivides(W2,W1)) & isPrime(W2))))))
=> ( ? [W1] : ((aNaturalNumber(W1) & doDivides(W1,W0)) &
isPrime(W1))))))).

�original�

Definition 6. p is prime iff p is nontrivial and
for every divisor d of p d=1 or d= p.

Lemma 7. 2 is prime.

Lemma 8. Every even prime number is equal
to 2.

Lemma 9. 3 is prime.

Lemma 10. Every nontrivial n has a prime
divisor.



E fails without �by induction�; some statistics



The linguistic view: analyzing mathematical language

- simple (argumentative) sentences
with symbolic material

- LATEX conventions

- grammatical analysis

- parsing

- softly typed language

- translating into first-order logic



Phrase structure grammar

every nontrivial natural number has a prime divisor

statement ! subject predicate

subject ! every nontrivial natural number

predicate ! has a prime divisor





A simplified fragment of the ForTheL phrase structure grammar

every nontrivial natural number has a prime divisor

simpleStatement ! terms doesPredicate {and doesPredicate}

terms ! term {(,| and) term}

term ! quantifiedNotion | definiteTerm

quantifiedNotion ! (every | each | all | any) notion

notion ! classNoun | . . .

classNoun ! {leftAttribute} primClassNoun [rightAttribute ]

primClassNoun ! natural number

doesPredicate ! (has | have) hasPredicate

hasPredicate ! [ a | an | the ] possessedNoun {and [a | an | the] possessedNoun} | no possessedNoun

possessedNoun ! {leftAttribute} primPossessedNoun

primPossessedNoun ! (divisor | divisors) [names ] �� derived from the phrase �divisor of�

leftAttribute ! nontrivial | prime | . . .



The ForTheL phrase structure grammar is implemented in Naproche

every nontrivial natural number has a prime divisor

simpleStatement ! terms doesPredicate {and doesPredicate}

simple :: FTL Formula

simple = label "simple statement" $ do

(q, ts) <- terms

p <- conjChain doesPredicate

q <$> dig p ts

. . .

doesPredicate ! (has | have) hasPredicate

doesPredicate :: FTL Formula

doesPredicate = label "does predicate" $

( . . . <|> hasP <|> . . .

where

. . .

hasP = has >> hasPredicate

. . .







Naproche texts can be readable like textbook mathematics:



Perspectives

� to increase the coverage of Naproche . . .

� to build a more efficient Naproche on a set-theoretical basis (Adrian De Lon) . . .

� to transfer the Naproche approach to other proof systems . . .

� to use LLMs for language translation and other language processing . . .



Thank you!

https://naproche.github.io/

https://isabelle.in.tum.de/website-Isabelle2024/
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