Naproche - Talking to ATPs

by Peter Koepke

Mathematical Institute and Hausdorff Center for Mathematics, University of Bonn

EuroProofNet School on Natural Formal Mathematics

Bonn, 2 June 2025

Abstract

Interactive Theorem Proving (ITP) can be seen as a process where a human user steers an Automated Theorem Prover (ATP) to certify proof steps sufficient for the theorem under consideration. Steering is achieved by various languages which are connected by logically correct translation mechanisms. In the Naproche system, these languages contain the ordinary language of mathematics, the controlled natural language ForTheL, enriched first-order logic, and the ATP input language TPTP.

An example Naproche text

A Naproche Teaser

Peter Koepke

June 2, 2025

Abstract

This is an introduction to the Naproche proof system [1] which accepts and checks readable texts written in a (controlled) natural mathematical language, with natural proof structurings.

Simple introduction of natural numbers and prime numbers

An example \mathbb{N} aproche text

Contents

1	Introduction	1
2	Getting Started	2
3	Natural Numbers	3
4	The Natural Order	4
5	Induction	5
6	Division	6
7	Prime Numbers	7
8	Euclid's Lemma	7

Simple introduction of natural num-

bers and prime numbers

An example \mathbb{N} aproche text

Simple introduction of natural numbers and prime numbers

Leading up to Euclid's Lemma

Theorem 52 (Euclids Lemma). Let p be a prime number and p|m * n. Then p|m or p|n.

An example \mathbb{N} aproche text

7 Prime Numbers

[dump on] Let p, d denote natural numbers.

Let n is nontrivial stand for $n \neq 0$ and $n \neq 1$.

Definition 44. p is prime iff p is nontrivial and for every divisor d of p d = 1 or d = p.

Let a prime number stand for a natural number that is prime.

Lemma 45. 2 is prime.

Lemma 46. Every even prime number is equal to 2.

Lemma 47. 3 is prime.

Lemma 48. Every nontrivial natural number has a prime divisor.

Proof by induction.

Simple introduction of natural numbers and prime numbers

Leading up to Euclid's Lemma

Detailed analysis of Lemma 48

Lemma 48

7 Prime Numbers

[dump on] Let p, d denote natural numbers.

Let n is nontrivial stand for $n \neq 0$ and $n \neq 1$.

Definition 44. p is prime iff p is nontrivial and for every divisor d of p d = 1 or d = p.

Let a prime number stand for a natural number that is prime.

Lemma 45. 2 is prime.

Lemma 46. Every even prime number is equal to 2.

Lemma 47. 3 is prime.

Lemma 48. Every nontrivial natural number has a prime divisor.
Proof by induction.

Mathematical statement in natural language

Considered as fully formal statement by Naproche

Fully formal material on gray background

Other "literate" material on white background

Lemma 48

7 Prime Numbers

[dump on] Let p, d denote natural numbers. Let n is nontrivial stand for $n \neq 0$ and $n \neq 1$. Definition 44. p is prime iff p is nontrivial and for every divisor d of p d = 1 or d = p. Let a prime number stand for a natural number that is prime. Lemma 45. 2 is prime. Lemma 46. Every even prime number is equal to 2. Lemma 47. 3 is prime. Lemma 48. Every nontrivial natural number has a prime divisor. Proof by induction.

8 Euclid's Lemma

We need that prime numbers are prime elements in the ring of integers, or the halfring of natural numbers. The following argument is taken over almost verbatim from the Wikipedia article on Euclid's Lemma [6].

Definition 49. m and n are coprime iff every common divisor of m and n is equal to 1.

Lemma 50. If m and m are coprime then m = 1.

Let a, b denote natural numbers.

Lemma 51. For all nonzero natural numbers n, a, b if n|a * b and n and a are coprime then n divides b.

Proof by induction on a * b.

Let n, a, b be nonzero natural numbers such that n|a*b and n and a are coprime. Take a natural number q such that n*q = a*b.

Case n = a. Then n = 1 and n|b. qed.

Case a > n. Then $q \ge b$.

n * (q - b) = (n * q) - (n * b) = (a * b) - (n * b) = (a - n) * b.

Mathematical statement in natural language

Considered as fully formal statement by Naproche

Fully formal material on gray background

Other "literate" material on white background

A mathematical view on the text

7 Prime Numbers

[dump on] Let p, d denote natural numbers.

Let n is nontrivial stand for $n \neq 0$ and $n \neq 1$.

Definition 44. p is prime iff p is nontrivial and for every divisor d of p d = 1 or d = p.

Let a prime number stand for a natural number that is prime.

Lemma 45. 2 is prime.

Lemma 46. Every even prime number is equal to 2.

Lemma 47. 3 is prime.

Lemma 48. Every nontrivial natural number has a prime divisor.
Proof by induction.

Textbook-like introduction of prime numbers

- pretyping of variables p, d
- definition of prime
- prime number *as a linguistic alternative*
- illustrative lemmas 45-47 whose proofs are "left to the reader"
- Lemma 48 is an interesting result with the proof hint "by induction"

The typesetting view

```
486 \subsection {Prime Numbers}
487
488 \begin{forthel}
489 [dump on]
490 Let $p,d$ denote natural numbers.
491
492 Let n\ is nontrivial stand for n \ge 0 and n \ge 1.
493
494 \begin{definition}
495 $p$ is prime iff $p$ is nontrivial and
496 for every divisor $d$ of $p$ $d = 1$ or $d = p$.
497 \end{definition}
498 Let a prime number stand for a natural number that is prime.
499
500 \begin{lemma} $2$ is prime.
501 \end{lemma}
502
503 \begin{lemma}
504 Every even prime number is equal to $2$.
505 \end{lemma}
506
507 \begin{lemma} $3$ is prime.
508 \end{lemma}
509
510 \begin{lemma}
511 Every nontrivial natural number has a prime divisor.
512 \end{lemma}
513 \begin{proof} [by induction]
514 %Let $n$ be a nontrivial natural number.
515 %Assume that $n$ is not prime.
516 %Take a divisor $m$ of $n$ such that $m \neq 1$ and $m \neq n$.
517 %$m$ is inductively smaller than $n$.
518 %Every prime divisor of $m$ is a prime divisor of $n$.
519 \end{proof}
520 \end{forthel}
```

Readable output generated from L^AT_EX by pdfLaTeX

- simple L^AT_EX

- forthel environments for strictly formal text

- ordinary L^AT_EX environments for definitions, lemmas and proofs

- L^AT_EX file (...ftl.org) is the input to the Naproche system

Working with \mathbb{N} aproche documents in Isabelle

Home

Overview

Isabelle

What is Isabelle?

Isabelle is a generic proof assistant. It allows mathematical formulas to be expressed in a formal language and provides tools for proving those formulas in a logical calculus. Isabelle was originally developed at the <u>University of Cambridge</u> and <u>Technische</u> <u>Universität München</u>, but now includes numerous contributions from institutions and individuals worldwide. See the <u>Isabelle overview</u> for a brief introduction.

Installation Documentation

Site Mirrors: <u>Cambridge (.uk)</u> <u>Munich (.de)</u> <u>Sydney (.au)</u> <u>Potsdam, NY (.us)</u>

Now available: Isabelle2024 (May 2024)

Download for Linux (Intel) - Download for Linux (ARM) - Download for Windows - Download for macOS

Hardware requirements:

- Small experiments: 4 GB memory, 2 CPU cores
- Medium applications: 8 GB memory, 4 CPU cores
- · Large projects: 16 GB memory, 8 CPU cores
- Extra-large projects: 64 GB memory, 16 CPU cores

Some notable changes:

- · More robust and scalable support for distributed build clusters.
- Official support for ARM64 on Linux (notably Docker on Apple Silicon).
- · HOL: various improvements of theory libraries, notably in HOL-Analysis.
- · HOL: updates and improvements of Sledgehammer

Working with \mathbb{N} approche documents in Isabelle2024

Home

Overview

Installation

Isabelle

What is Isabelle?

Isabelle is a generic proof assistant. It allows mathematical formulas to be expressed in a formal language and provides tools for proving those formulas in a logical calculus. Isabelle was originally developed at the <u>University of Cambridge</u> and <u>Technische</u> <u>Universität München</u>, but now includes numerous contributions from institutions and individuals worldwide. See the <u>Isabelle overview</u> for a brief introduction.

Documentation

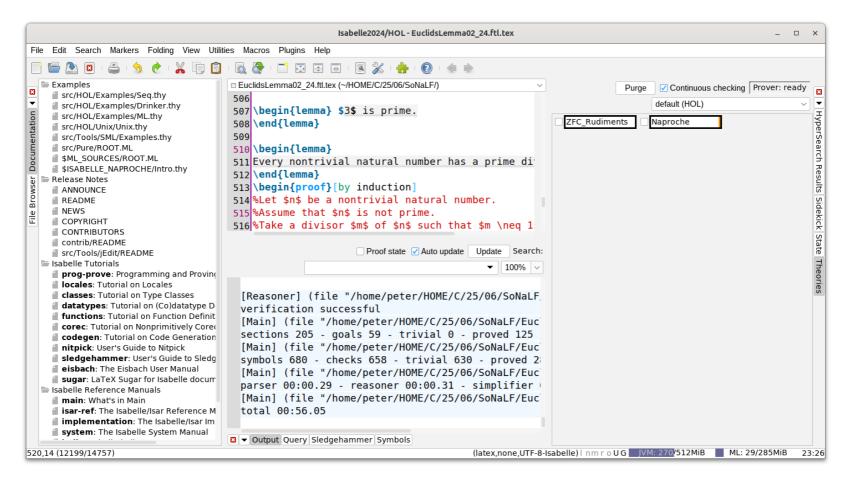
Site Mirrors: <u>Cambridge (.uk)</u> <u>Munich (.de)</u> <u>Sydney (.au)</u> <u>Potsdam, NY (.us)</u>

Now available: Isabelle2024 (May 2024)

Download for Linux (Intel) - Download for Linux (ARM) - Download for Windows - Download for macOS

Hardware requirements:

- Small experiments: 4 GB memory, 2 CPU cores
- Medium applications: 8 GB memory, 4 CPU cores
- · Large projects: 16 GB memory, 8 CPU cores
- Extra-large projects: 64 GB memory, 16 CPU cores


Some notable changes:

- · More robust and scalable support for distributed build clusters.
- Official support for ARM64 on Linux (notably Docker on Apple Silicon).
- · HOL: various improvements of theory libraries, notably in HOL-Analysis.
- · HOL: updates and improvements of Sledgehammer

Working with \mathbb{N} aproche documents in Isabelle

Isabelle2024/HOL - Scratch.thy –					
File Edit Search Markers Folding View Utili	ities Macros Plugins Help				
📄 🚰 💁 🛛 I 🚔 I 🥱 🍖 I 🔏 🗊 🗊					
Examples	■ Scratch.thy (~/)	ver: ready			
 src/HOL/Examples/Seq.thy src/HOL/Examples/Drinker.thy 	1 default (HOL)				
src/HOL/Examples/Drinker.thy					
src/HOL/Zamples/Dinker.uty src/HOL/Zamples/Dinker.uty src/HOL/Zamples/ML.thy src/Pure/ROOT.ML src/Pure/ROOT.ML shL_SOURCES/ROOT.ML slSABELLE_NAPROCHE/Intro.thy Release Notes ANNOUNCE README		HyperSearch Results			
src/Tools/SML/Examples.thy		erse			
src/Pure/ROOT.ML		ear			
ខ្លី 🖆 \$ML_SOURCES/ROOT.ML		5			
SISABELLE_NAPROCHE/Intro.thy		Re			
🔄 🗁 Release Notes		sult			
S ANNOUNCE		8			
		Sidekick State Theories			
e l NEWS		kic			
		×			
contrib/README		sta			
src/Tools/jEdit/README	□ Proof state 🗹 Auto update Update Search:	ਵਿ			
🗁 Isabelle Tutorials	▼ 100% ∨	The			
prog-prove: Programming and Proving		Por			
Iocales: Tutorial on Locales classes: Tutorial on Type Classes		les			
datatypes: Tutorial on (Co)datatype D					
functions: Tutorial on Function Definit					
corec : Tutorial on Nonprimitively Core					
codegen: Tutorial on Code Generation					
nitpick: User's Guide to Nitpick					
sledgehammer: User's Guide to Sledg					
eisbach: The Eisbach User Manual					
sugar: LaTeX Sugar for Isabelle docum Isabelle Reference Manuals					
main: What's in Main					
isar-ref: The Isabelle/Isar Reference M					
implementation: The Isabelle/Isar Im					
system: The Isabelle System Manual					
	Image: Comparison of the second se				
1,1 (0/0)	(isabelle,isabelle,UTF-8-Isabelle) nm r o U G/VM: 451/776MiBL: 10/1	.0MiB 23:23			

Working with Naproche documents in Isabelle

The proof-checking view

7 Prime Numbers

[dump on] Let p, d denote natural numbers.

Let n is nontrivial stand for $n \neq 0$ and $n \neq 1$.

Definition 44. p is prime iff p is nontrivial and for every divisor d of p d = 1 or d = p.

Let a prime number stand for a natural number that is prime.

Lemma 45. 2 is prime.

Lemma 46. Every even prime number is equal to 2.

Lemma 47. 3 is prime.

Lemma 48. Every nontrivial natural number has a prime divisor. Proof by induction.

Textbook-like introduction of prime numbers

- Lemma 48 has a short proof "by induction"

- Proof is carried out by the E Automated Theorem Prover (ATP)

- What is the prover task given to E?

Inspecting the interaction of \mathbb{N} approche and E in Isabelle: *dump on*

<pre>showstatestatestatestatestatestatestatestat</pre>	Isabelle2024/HOL - EuclidsLemma02_24.ftl.tex (modified)	o x
<pre>Examples src/HOL/Examples/metry src/HOL/</pre>	File Edit Search Markers Folding View Utilities Macros Plugins Help	
<pre>Sourcesture scr/hou/Examples/Metry scr/h</pre>		
	<pre>Examples Examples FixeHoL/Examples/Seq.thy frorHoL/Examples/Seq.th</pre>	HyperSearch Results
	509,10 (11837/14757) (latex,none,UTF-8-Isabelle) nm r o U G VM: 299/512MiB ML: 175/431	liB 23:30

First-order translation and translation into TPTP prover format

Öffnen ~ 」+1			Parser file I Ent		Z 4894, Sp	o 15 ♥ ≡ - □ ×
6 4 DI	IS Toronto DUS DUB.txt	notes2.txt	• ideas.txt	Neues Dokument	• eprover 1 sec	Parser file home peter ×
374	isPrime(3)	,, p	· / ······ - / - / / / / / /		Q 511 0 von 4	
375	[Reasoner] (line 507 of	"/home/peter/H	OME/C/25/06/SoNaLF/Eucl	idsLemma02_24.ftl.tex		
376	goal: 3 is prime.					
377	[Translation] (line 511	of "/home/pete	r/HOME/C/25/06/SoNaLF/E	uclidsLemma02_24.ftl.t	ex")	
378	forall v0 ((aNaturalNur	ber(v0) and (no	t v0 = 0 and not v0 = 1)) implies ((Induction	Hypothesis :: forall vi	L I
	((aNaturalNumber(v1) ar	nd (not v1 = 0 a	nd not v1 = 1)) implies	; (iLess(v1,v0) implies	exists v2 ((aNaturalNu	umber(v2) and
	doDivides(v2,v1)) and i	.sPrime(v2)))))	implies exists v1 ((aNa	turalNumber(v1) and do	Divides(v1,v0)) and is	Prime(v1))))
379	[Reasoner] (line <mark>511</mark> of	"/home/peter/H	OME/C/25/06/SoNaLF/Eucl	idsLemma02_24.ftl.tex")	
380	goal: Every nontrivial	. natural number	has a prime divisor.			
381	[Main] (line <mark>511</mark> of "/h	ome/peter/HOME/	C/25/06/SoNaLF/EuclidsL	emma02_24.ftl.tex")		
382	<pre>fof(m_,hypothesis,(! [</pre>	W0]:(![W1]	: ((aObject(W0) & aObje	ect(W1)) => aObject(mkP	air(W0,W1))))).	
383	<pre>fof(m_,hypothesis,(! [</pre>	W0]:(![W1]	: ((aMap(W0) & aElement	:Of(W1,mkDom(W0))) => a	Object(mkApp(W0,W1)))))).
384	84 fof(m_,hypothesis,(! [W0] : (! [W1] : ((aClass(W0) & aElementOf(W1,W0)) => aObject(W1))))).					
385	<pre>fof(m_,hypothesis,(! [</pre>	W0] : (aMap(W0)	=> aClass(mkDom(W0))))).		
386	<pre>86 fof(m_,hypothesis,(! [W0] : (aFunction(W0) <=> (aMap(W0) & aObject(W0))))).</pre>					
387	37 fof(m_,hypothesis,(! [W0] : (aSet(W0) <=> (aClass(W0) & aObject(W0))))).					
	<pre>fof(m_,hypothesis,(! [</pre>					
389	<pre>39 fof(m_,hypothesis,((aClass(sbszmzaztzhzbzblczNrc) & (! [W0] : (aElementOf(W0,sbszmzaztzhzbzblczNrc) <=> (aNaturalNumber(W0) &</pre>					
	aObject(W0))))) & (! [W0) & (! [W1] : (aEler	nentOf(W1,W0) <=> (aNat	uralNumber(W1) & aObjec	ct(W1)))) => (W0 =
	<pre>sbszmzaztzhzbzblczNrc))</pre>					
	fof(maxiomofinfinity,hy					
	fof(m_,hypothesis,aNatu	. ,,				
	<pre>fof(m_,hypothesis,(aNat</pre>	1 1				
	3 fof(m_,hypothesis,(! [W0] : (! [W1] : ((aNaturalNumber(W0) & aNaturalNumber(W1)) => aNaturalNumber(sdtpldt(W0,W1))))).					
394	<pre>fof(m_,hypothesis,(! [</pre>		Number(W0) => ((aNatura	1Number(W0) & (~ (W0	= sz0))) => (? [W1] :	(aNaturalNumber(W1)
	& (W0 = sdtpldt(W1,sz1)))))))).				

First-order translation and translation into TPTP prover format

Öffne	n ∨ ∫∓l		• Parser file	home peter	Z 4894, 1	Sp 15 ◎ Ξ (_) (□ (×)
6 4 DI	JS Toronto DUS DUB.txt	notes2.txt	• ideas.txt	Neues Dokument	• eprover 1 sec	Parser file home peter ×
420	<pre>tot(m_,hypothesis,(! sdtbszlzezqdt(W1,sdta</pre>	2 3 1	ımber(₩0) => ((~ (₩0	= sz0)) => (! [W1] :	Q 511 0 von 4	~~ Ø Ø ×
421	<pre>fof(m_,hypothesis,(!</pre>	[W0] : (aNaturalNu	umber(W0) => (sdtbszl:	ezqdt(W0,sz0) => (W0 =	sz0))))).	
422	<pre>fof(m_,hypothesis,(!</pre>	[W0] : (aNaturalNu	umber(W0) => (sdtbszl:	ezqdt(W0,sz1) => ((W0	= sz0) (W0 = sz1)))))).
423	<pre>fof(m_,hypothesis,(!</pre>	[W0] : (aNaturalNu	umber(W0) => (sdtbszl:	ezqdt(W0,sz2) => (((W0	= sz0) (W0 = sz1))	(W0 = sz2)))))).
424	<pre>fof(m_,hypothesis,(((</pre>	sdtbszlzezqdt(sz0,s	sz1) & (~ (sz0 = sz1)))) & (sdtbszlzezqdt(sz	1,sz2) & (~ (sz1 = sz	2)))) &
	(sdtbszlzezqdt(sz2,sz	3) & (~ (sz2 = sz3	3))))).			
425	<pre>fof(m_,hypothesis,(!</pre>	[W0] : (! [W1] :	((aNaturalNumber(W0)	& aNaturalNumber(W1))	=> (doDivides(W1,W0) <	=> (? [W2] :
	(aNaturalNumber(W2) &	، (WO = sdtasdt(W1,W	√2)))))))).			
426	<pre>fof(m_,hypothesis,(!</pre>	[W0] : (! [W1] :	(! [W2] : (((aNatura	alNumber(W0) & aNatural	Number(W1)) & aNatural	Number(W2)) =>
	((doDivides(W0,W1) &	doDivides(W1,W2)) =	<pre>=> doDivides(W0,W2)))</pre>)))).		
427	<pre>fof(m_,hypothesis,(!</pre>	[W0] : (! [W1] :	(! [W2] : (((aNatura	alNumber(W0) & aNatural	Number(W1)) & aNatural	Number(W2)) =>
	((doDivides(W0,W1) &	doDivides(W0,sdtplo	dt(W1,W2))) => doDivio	les(W0,W2)))))).		
428	s fof(m_,hypothesis,(! [W0] : (! [W1] : ((aNaturalNumber(W0) & aNaturalNumber(W1)) => ((doDivides(W0,W1) & (~ (W1 = sz0))) =>					
	<pre>sdtbszlzezqdt(W0,W1))</pre>)))).				
429	<pre>fof(m_,hypothesis,(!</pre>	[W0] : (aNaturalNu	umber(W0) => (isEven(N	№) <=> doDivides(sz2,W	10))))).	
430	<pre>fof(m_,hypothesis,(!</pre>	[W0] : (aNaturalNu	umber(W0) => (isEven(N	₩0) (? [W1] : (aNatu	ralNumber(W1) & (W0 =	
	sdtpldt(sdtasdt(sz2,W	1),sz1))))))).				
431	<pre>fof(m_,hypothesis,(!</pre>	[W0] : (aNaturalNu	umber(W0) => (isPrime	(W0) <=> (((~ (W0 = sz	0)) & (~ (WO = sz1)))	& (! [W1] :
	((aNaturalNumber(W1)	& doDivides(W1,W0))) => ((W1 = sz1) (W2	L = W0))))))))).		
432	<pre>fof(m_,hypothesis,isP</pre>	'rime(sz2)).				
433	<pre>fof(m_,hypothesis,(!</pre>	[W0] : (((aNatural	LNumber(W0) & isPrime	(W0)) & isEven(W0)) =>	(W0 = sz2)))).	
	<pre>fof(m_,hypothesis,isP</pre>	. ,,				
435	<pre>fof(m,conjecture,(</pre>	! [W0] : ((aNatural	LNumber(W0) & ((~ (W0	0 = sz0)) & (~ (W0 = s	z1)))) => ((! [W1] :	((aNaturalNumber(W1)
			, , , , ,	? [W2] : ((aNaturalNum	. ,	2,W1)) &
		? [W1] : ((aNatura	alNumber(W1) & doDivio	des(W1,W0)) & isPrime(W	1)))))).	
436)

\mathbb{N} aproche's input to E

```
"original"
. . .
fof(m_,hypothesis,( ! [W0] : (aNaturalNumber(W0) => (isPrime(W0)
                                                                     Definition 1. p is prime iff p is nontrivial and
<=> ((( ~ (WO = sz0)) & ( ~ (WO = sz1))) & ( ! [W1] :
                                                                     for every divisor d of p \ d = 1 or d = p.
((aNaturalNumber(W1) \& doDivides(W1,W0)) => ((W1 = sz1) | (W1 =
WO))))))))).
                                                                     Lemma 2. 2 is prime.
fof(m_,hypothesis,isPrime(sz2)).
fof(m_,hypothesis,( ! [W0] : (((aNaturalNumber(W0) & isPrime(W0))
                                                                     Lemma 3. Every even prime number is equal
& isEven(WO)) => (WO = sz2)))).
                                                                     to 2.
fof(m_,hypothesis,isPrime(sz3)).
                                                                     Lemma 4. 3 is prime.
fof(m__,conjecture,( ! [W0] : ((aNaturalNumber(W0) & (( ~ (W0 =
sz0)) & ( ~ (WO = sz1)))) => (( ! [W1] : ((aNaturalNumber(W1) &
(( ~ (W1 = sz0)) & ( ~ (W1 = sz1)))) => (iLess(W1,W0) => ( ? [W2] Lemma 5. Every nontrivial n has a prime
: ((aNaturalNumber(W2) & doDivides(W2,W1)) & isPrime(W2))))))
                                                                     divisor.
=> ( ? [W1] : ((aNaturalNumber(W1) & doDivides(W1,W0)) &
isPrime(W1)))))).
```

The "by induction" proof tactic

0.5 Induction

Naproche provides an in-built binary relation symbol \prec as a universal inductive relation: if

(inheritance property) at any point m property P holds at m provided all $\prec\text{-predecessors}$ of m satisfy P

then

 ${\cal P}$ holds everywhere.

Naproche has a proof tactic "by induction [on ...]", which reduces the inductive proof goal "P holds everywhere" to proving the inheritance property for P.

Initially, there is no specification of \prec . The induction proof method for some concrete relation is made available by embedding that relation into \prec . Therefore we axiomatically embed the natural order into \prec .

Axiom 30. If m < n then $m \prec n$.

Let *m* is inductively smaller than *n* stand for $m \prec n$.

Induction in TPTP: iLess as \prec

Öffne	n ∨ ∫+]		 Parser file Ent 	home peter wurf		Z 4894, Sp 15 🔘 🗏 👝 🔲 🗙
6 4 DI	JS Toronto DUS DUB.txt	notes2.txt	 ideas.txt 	Neues Dokument	 eprover 1 set 	● Parser file home pet∈ ×
420	<pre>tot(m_,hypothesis</pre>	,(! [W0] : (aNatural	Number(W0) => ((~ (W0	= sz0)) => (! [W1] :		
	<pre>sdtbszlzezqdt(W1,</pre>	sdtasdt(W1,W0)))))))			Q 511	0 von 4
421	fof(m_,hypothesis	,(! [W0] : (aNatural	Number(W0) => (sdtbszl:	ezqdt(W0,sz0) => (W0 =	= sz0))))).	
422	fof(m_,hypothesis	,(! [W0] : (aNatural	Number(W0) => (sdtbszl:	ezqdt(W0,sz1) => ((W0	= sz0) (W0 = s	z1)))))).
423	fof(m_,hypothesis	,(! [W0] : (aNatural	Number(W0) => (sdtbszl:	ezqdt(W0,sz2) => (((W	0 = sz0) (W0 =	sz1)) (W0 = sz2)))))).
424	fof(m_,hypothesis	,(((sdtbszlzezqdt(sz0	,sz1) & (~ (sz0 = sz1))) & (sdtbszlzezqdt(s	z1,sz2) & (~ (sz	1 = sz2)))) &
	(sdtbszlzezqdt(sz	2,sz3) & (~ (sz2 = s	z3))))).			
425	fof(m_,hypothesis	,(! [W0] : (! [W1]	: ((aNaturalNumber(W0)	& aNaturalNumber(W1))	=> (doDivides(W1	,W0) <=> (? [W2] :
	(aNaturalNumber(W	2) & (W0 = sdtasdt(W1	,W2)))))))).			
426	fof(m_,hypothesis	,(! [W0] : (! [W1]	: (! [W2] : (((aNatura	alNumber(W0) & aNatura	lNumber(W1)) & aN	aturalNumber(W2)) =>
	((doDivides(W0,W1) & doDivides(W1,W2))	=> doDivides(W0,W2)))))).		
427	fof(m_,hypothesis	,(! [W0] : (! [W1]	: (! [W2] : (((aNatura	alNumber(W0) & aNatura	lNumber(W1)) & aN	aturalNumber(W2)) =>
	((doDivides(W0,W1) & doDivides(W0,sdtp	ldt(W1,W2))) => doDivid	les(W0,W2)))))).		
428	<pre>fof(m_,hypothesis</pre>	,(! [W0] : (! [W1]	: ((aNaturalNumber(W0)	& aNaturalNumber(W1))	=> ((doDivides(W	0,W1) & (~ (W1 = sz0))) =>
	sdtbszlzezqdt(W0,	V1))))).				
429	fof(m_,hypothesis	,(! [W0] : (aNatural	Number(W0) => (isEven(N	NO) <=> doDivides(sz2,	W0))))).	
430	fof(m_,hypothesis	,(! [W0] : (aNatural	Number(W0) => (isEven(N	10) (? [W1] : (aNat	uralNumber(W1) &	(W0 =
	sdtpldt(sdtasdt(s	z2,W1),sz1))))))).				
431	<pre>fof(m_,hypothesis</pre>	,(! [W0] : (aNatural	Number(W0) => (isPrime	W0) <=> (((~ (W0 = s	z0)) & (~ (W0 =	sz1))) & (! [W1] :
	((aNaturalNumber(V1) & doDivides(W1,W0)) => ((W1 = sz1) (W2	. = W0))))))))).		
432	fof(m_,hypothesis	isPrime(sz2)).				
433	fof(m_,hypothesis	,(! [W0] : (((aNatur	alNumber(W0) & isPrime	W0)) & isEven(W0)) =>	(W0 = sz2)))).	
434	fof(m_,hypothesis	isPrime(sz3)).				
435	fof(m,conjectur	e,(! [W0] : ((aNatur	alNumber(W0) & ((~ (W0) = sz0)) & (~ (WO = :	sz1)))) => ((! [W1] : ((aNaturalNumber(W1)
			=> (iLess(W1,W0) => (· ·		des(W2,W1)) &
		=> (? [W1] : ((aNatu	ralNumber(W1) & doDivid	les(W1,W0)) & isPrime(N	W1)))))).	
436)

\mathbb{N} aproche's input to E

```
"original"
. . .
fof(m_,hypothesis,( ! [W0] : (aNaturalNumber(W0) => (isPrime(W0)
                                                                     Definition 6. p is prime iff p is nontrivial and
<=> ((( ~ (WO = sz0)) & ( ~ (WO = sz1))) & ( ! [W1] :
                                                                     for every divisor d of p \ d = 1 or d = p.
((aNaturalNumber(W1) \& doDivides(W1,W0)) => ((W1 = sz1) | (W1 =
WO))))))))).
                                                                     Lemma 7. 2 is prime.
fof(m_,hypothesis,isPrime(sz2)).
fof(m_,hypothesis,( ! [W0] : (((aNaturalNumber(W0) & isPrime(W0))
                                                                     Lemma 8. Every even prime number is equal
& isEven(WO)) => (WO = sz2)))).
                                                                     to 2.
fof(m_,hypothesis,isPrime(sz3)).
                                                                     Lemma 9. 3 is prime.
fof(m__,conjecture,( ! [W0] : ((aNaturalNumber(W0) & (( ~ (W0 =
sz0)) & ( ~ (WO = sz1)))) => (( ! [W1] : ((aNaturalNumber(W1) &
(( ~ (W1 = sz0)) & ( ~ (W1 = sz1)))) => (iLess(W1,W0) => ( ? [W2] Lemma 10. Every nontrivial n has a prime
: ((aNaturalNumber(W2) & doDivides(W2,W1)) & isPrime(W2))))))
                                                                     divisor.
=> ( ? [W1] : ((aNaturalNumber(W1) & doDivides(W1,W0)) &
isPrime(W1)))))).
```

E fails without "by induction"; some statistics

File Edit Ceareb Markere Felding View Utiliti		– 🗆 ×
File Edit Search Markers Folding View Utiliti	ies Macros Plugins Help	
📄 🔚 🖄 🛛 + 🚢 + 🥱 🥐 + 🔏 🗐 🗐	i 🔯 🦓 i 📑 🔀 🗟 i 🗟 🕺 i 🌞 i 🔞 i 🐗 🗼	
Examples src/HOL/Examples/Dinker.thy src/HOL/Examples/Dinker.thy src/HOL/Examples/ML.thy src/HOL/DixAmples/ML.thy src/HOL/DixAmples/ML.t	<pre>EuclidsLemma02_24.ft.tex (~/HOME/C/25/06/SoNaLF/) 507 \begin{lemma} \$3\$ is prime. 508 \end[lemma] 509 [dump on] 510 \begin{lemma} 510 \begin{lemma} 511 Every nontrivial natural number has a prime divisor. 512 \end{lemma} 513 %\begin{proof}[by induction] 514 %Let \$n\$ be a nontrivial natural number. 515 %Assume that \$n\$ is not prime. 516 %Take a divisor \$m\$ of \$n\$ such that \$m \neq 1\$ and \$m \neq n\$. 517 %\$m\$ is inductively smaller than \$n\$. 518 %Every prime divisor of \$m\$ is a prime divisor of \$n\$. 519 %\end{proof} 520 \end{forthe}</pre>	Purge Purge HyperSearch Results Sidekick State Theores
locales: Tutorial on Locales classes: Tutorial on Type Classes datatypes: Tutorial on Coldatatype Det functions: Tutorial on Function Definitic corec: Tutorial on Nonprimitively Corecu codegen: Tutorial on Code Generation nitpick: User's Guide to Nitpick sledgehammer: User's Guide to Sledge eisbach: The Eisbach User Manual sugar: LaTeX Sugar for Isabelle docume Isabelle Reference Manuals main: What's in Main isar-ref: The Isabelle/Jsar Reference Ma implementation: The Isabelle/Isar Manual jedit: Isabelle/JEdit Demo Documents Old Isabelle Manuals Original jEdit Documentation	S22 \subsection{Euclid's Lemma} S23 S24 We need that prime numbers are prime Proof state ⊘ Auto update Update Search: 100% ∨ fof(m_,conjecture,(doDivides(xp,xm) doDivides(xp,xn))). [Reasoner] (file "/home/peter/HOME/C/25/06/SoNaLF/EuclidsLemma02_24.ftl.tex") verification failed [Main] (file "/home/peter/HOME/C/25/06/SoNaLF/EuclidsLemma02_24.ftl.tex") sections 205 - goals 59 - failed 1 - trivial 0 - proved 124 - equations 0 [Main] (file "/home/peter/HOME/C/25/06/SoNaLF/EuclidsLemma02_24.ftl.tex") symbols 671 - checks 649 - trivial 621 - proved 28 - unfolds 827 [Main] (file "/home/peter/HOME/C/25/06/SoNaLF/EuclidsLemma02_24.ftl.tex") parser 00:00.31 - reasoner 00:00.31 - simplifier 00:00.00 - prover 00:13.32/00:00 [Main] (file "/home/peter/HOME/C/25/06/SoNaLF/EuclidsLemma02_24.ftl.tex") total 00:13.95 ERROR © Output Query Sledgehammer Symbols (latex_none,UTF-8-Isabelle) nmr o UG IMM 173/512MIB Mathematical State Stat	

The linguistic view: analyzing mathematical language

7 Prime Numbers

[dump on] Let p, d denote natural numbers.

Let n is nontrivial stand for $n \neq 0$ and $n \neq 1$.

Definition 44. p is prime iff p is nontrivial and for every divisor d of p d = 1 or d = p.

Let a prime number stand for a natural number that is prime.

Lemma 45. 2 is prime.

Lemma 46. Every even prime number is equal to 2.

Lemma 47. 3 is prime.

Lemma 48. Every nontrivial natural number has a prime divisor. Proof by induction.

- simple (argumentative) sentences with symbolic material
- L^AT_EX conventions
- grammatical analysis
- parsing
- softly typed language
- translating into first-order logic

Phrase structure grammar

every nontrivial natural number has a prime divisor

 $statement \rightarrow subject \ predicate$

 $subject \rightarrow every nontrivial natural number$

 $\textit{predicate} \rightarrow \texttt{has}$ a prime divisor

The syntax and semantics of the ForTheL language^{*}

Andrei Paskevich

Université Paris XII — Val de Marne, Créteil, France

Kiev National Taras Shevchenko University, Kiev, Ukraine

December 2007

Contents

1	For	ormal Theory Language				
	1.1	Introduction	3			
	1.2	Lexical structure	4			
	1.3	Syntax of a statement	5			
		1.3.1 Syntactic primitives	6			
		1.3.2 Notions	7			
		1.3.3 Terms	9			
		1.3.4 Predicates	10			
		1.3.5 Statements	12			

A simplified fragment of the ForTheL phrase structure grammar

every nontrivial natural number has a prime divisor

```
simpleStatement \rightarrow terms \ doesPredicate \ \{and \ doesPredicate\}
```

```
terms \rightarrow term \{(, | and) term\}
```

 $term \rightarrow quantifiedNotion \mid definiteTerm$

 $quantifiedNotion \rightarrow (every | each | all | any) notion$

notion \rightarrow classNoun | ...

 $classNoun \rightarrow \{leftAttribute\} primClassNoun [rightAttribute]$

 $\textit{primClassNoun} \rightarrow \texttt{natural} \text{ number}$

 $doesPredicate \rightarrow$ (has | have) hasPredicate

```
hasPredicate \rightarrow [a | an | the ] possessedNoun {and [a | an | the] possessedNoun} | no possessedNoun 
possessedNoun <math>\rightarrow  {leftAttribute} primPossessedNoun 
primPossessedNoun \rightarrow  (divisor | divisors) [names] — derived from the phrase "divisor of" 
leftAttribute \rightarrow nontrivial | prime | ...
```

The ForTheL phrase structure grammar is implemented in Naproche

every nontrivial natural number has a prime divisor

```
simpleStatement \rightarrow terms doesPredicate {and doesPredicate}
simple :: FTL Formula
simple = label "simple statement" $ do
  (q, ts) <- terms
  p <- conjChain doesPredicate</pre>
  q <$> dig p ts
. . .
doesPredicate \rightarrow (has | have) hasPredicate
doesPredicate :: FTL Formula
doesPredicate = label "does predicate" $
  (... <|> hasP <|> ...
  where
     . . .
    hasP = has >> hasPredicate
     . . .
```

0.8 Euclid's Lemma

We need that prime numbers are prime elements in the ring of integers, or the halfring of natural numbers. The following argument is taken over almost verbatim from the Wikipedia article on Euclid's Lemma [6].

Definition 49. m and n are coprime iff every common divisor of m and n is equal to 1.

Lemma 50. If m and m are coprime then m = 1.

Let a, b denote natural numbers.

Lemma 51. For all nonzero natural numbers n, a, b if n | a * b and n and a are coprime then n divides b.

Proof by induction on a * b.

Let n, a, b be nonzero natural numbers such that n | a * b and n and a are coprime. Take a natural number q such that n * q = a * b.

```
Case n = a. Then n = 1 and n|b. qed.
```

```
Case a > n. Then q \ge b.
```

```
n * (q - b) = (n * q) - (n * b) = (a * b) - (n * b) = (a - n) * b.
```

Thus n divides (a-n)*b. n and a-n are coprime. (a-n)*b < a*b. (a-n)*b is inductively smaller than a*b. Thus n divides b. qed. Hence n > a and $b \ge q$.

$$(n-a) * q = (n * q) - (a * q) = (a * b) - (a * q) = a * (b - q).$$

0.8 Euclid's Lemma

We need that prime numbers are prime elements in the ring of integers, or the halfring of natural numbers. The following argument is taken over almost verbatim from the Wikipedia article on Euclid's Lemma [6].

Definition 49. m and n are coprime iff every common divisor of m and n is equal to 1.

Lemma 50. If m and m are coprime then m = 1.

Let a, b denote natural numbers.

Lemma 51. For all nonzero natural numbers n, a, b if n | a * b and n and a are coprime then n divides b.

Proof by induction on a * b.

Let n, a, b be nonzero natural numbers such that n | a * b and n and a are coprime. Take a natural number q such that n * q = a * b.

```
Case n = a. Then n = 1 and n|b. qed.
Case a > n. Then q \ge b.
```

n * (q - b) = (n * q) - (n * b) = (a * b) - (n * b) = (a - n) * b.

Thus n divides (a-n)*b. n and a-n are coprime. (a-n)*b < a*b. (a-n)*b is inductively smaller than a*b. Thus n divides b. qed. Hence n > a and $b \ge q$.

$$(n-a) * q = (n * q) - (a * q) = (a * b) - (a * q) = a * (b - q).$$

By induction [edit]

The following proof is inspired by Euclid's version of Euclidean algorithm, which proceeds by using only subtractions.

Suppose that $n \mid ab$ and that n and a are coprime (that is, their greatest common divisor is 1). One has to prove that n divides b. Since $n \mid ab$, there exists an integer q such that

nq = ab.

Without loss of generality, one can suppose that n, q, a, and b are positive, since the divisibility relation is independent of the signs of the involved integers.

To prove the theorem by strong induction, we suppose that it has been proved for all smaller values of *ab*. There are three cases:

1. If n = a, coprimality implies n = 1, and n divides b trivially.

2. If $n \leq a$, then subtracting nb from both sides gives

$$n(q-b) = (a-n)b.$$

Thus, *n* divides (a - n) b. Since we assumed that *n* and *a* are coprime, it follows that a - n and *n* must be coprime. (If not, their greatest common divisor *d* would divide their sum *a* as well as *n*, contradicting our assumption.)

The conclusion therefore follows by induction hypothesis, since $0 \le (a - n) \ b \le ab$.

3. If n > a then subtracting aq from both sides gives

\mathbb{N} aproche texts can be readable like textbook mathematics:

Definition 49. m and n are coprime iff every common divisor of m and n is equal to 1.

Lemma 50. If m and m are coprime then m = 1.

Let a, b denote natural numbers.

Lemma 51. For all nonzero natural numbers n, a, b if n | a * b and n and a are coprime then n divides b.

Proof by induction on a * b.

Let n, a, b be nonzero natural numbers such that n | a * b and n and a are coprime. Take a natural number q such that n * q = a * b.

Case n = a. Then n = 1 and n|b. qed.

Case a > n. Then $q \ge b$.

$$n * (q - b) = (n * q) - (n * b) = (a * b) - (n * b) = (a - n) * b.$$

Thus *n* divides (a-n)*b. *n* and a-n are coprime. (a-n)*b < a*b. (a-n)*b is inductively smaller than a*b. Thus *n* divides *b*. qed.

Hence n > a and $b \ge q$.

$$(n-a)*q = (n*q) - (a*q) = (a*b) - (a*q) = a*(b-q).$$

Perspectives

- to increase the coverage of Naproche ...
- to build a more efficient Naproche on a set-theoretical basis (Adrian De Lon) ...
- to transfer the $\mathbb N$ approche approach to other proof systems \ldots
- to use LLMs for language translation and other language processing

Thank you!

https://naproche.github.io/

https://isabelle.in.tum.de/website-Isabelle2024/