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Abstract

This is an introduction to the Naproche proof system [1] which
accepts and checks readable texts written in a (controlled) natural
mathematical language, with natural proof structurings.

The LATEXsource of the present file can be loaded into Isabelle 2024
(see [2]) which then automatically calls the Naproche proof checking
component of the Isabelle distribution. Depending on hardware this
file can be proof-checked within 1 or 2 minutes.
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0.1 Introduction

Most formalizations in today’s interactive proof systems are not “read-
able” by mathematicians, since they resemble computer programs for
building proofs from proof commands. In contrast, the system Naproche
(for Natural Proof Checking) uses the (extendible) controlled natural
language ForTheL (Formula Theory Language) as its input language
(see also [3]). ForTheL is embedded in LATEX and can readily be type-
set by pdfLaTeX.

Naproche can be viewed as a system that transforms ForTheL state-
ments into proof tasks that are sent out to an external automated the-
orem prover (ATP) like the E first-order prover [4] or Vampire [5]. A
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ForTheL text is correct if all generated proof tasks can be discharged
automatically.

Our short yet self-contained text starts from first principles and
develops the theory of natural numbers is as far as required for the
final result which is Euclid’s Lemma. Ideally foundational theories
would be provided by some library but the existing libraries and library
mechanisms in Naproche are still rudimentary.

Our formalization of natural numbers is an initial segment of a
larger Naproche formalization of perfectoid rings which are main com-
ponents of Peter Scholze’s perfectoid spaces.

This text is written as a file EuclidsLemma.ftl.tex in the LATEX
dialect of Naproche and typeset by pdf-LATEX. EuclidsLemma.ftl.tex
can be checked in the Naproche program by opening the file in the Is-
abelle 2024 generic proof assistant [2] (there were unexpected problems
in integrating Naproche into the current Isabelle 2025).

0.2 Getting Started

Naproche proof checking constitutes a major computational process:
each statement generates several first-order proof tasks each of which
can take several seconds of ATP proving. To ease the proving pro-
cess one can insert intermediate proof steps or increase the resources
available to the external automated theorem prover.

Let us fix the ATP and its parameters:

[prover eprover]

[timelimit 2]

[memorylimit 8000]

These are Naproche system commands that choose E as the ATP, which
is the default anyway; set the ATP timeout to 2 seconds (default = 3);
and allow up to 8000 Megabytes of working memory per prover call
(default = 2048).

Naproche commands and formalizations are enclosed in \begin{forthel}
... \end{forthel} environments and printed out on a grey back-
ground. Everything else is interpreted as ”literate” commentary that
is not subject to the logical checking by the system.

We expand our mathematical language by some singular/plural
pairs (vocabulary) by importing a library file which contains Naproche
commands of the form

[synonym number/-s]

:

2



[readtex meta-inf/source/vocabulary.ftl.tex]

We also introduce some alternative phrases for mathematical prop-
erties (macros) by import a file with ”alias” commands of the form

Let $x$ and $y$ are distinct stand for $x \neq y$.

:

[readtex meta-inf/source/macros.ftl.tex]

0.3 Natural Numbers

Our formalization axiomatically builds up a small yet familiar math-
ematical environment of natural numbers. The Naproche default en-
vironment contains mathematical objects. We introduce further types
by Signature, Definition and Axiom commands.

Natural numbers are introduced as objects of type “natural num-
ber” and characterized by arithmetical axioms, instead of constructing
them set-theoretically. This correponds to widespread intuitions that
numbers are indivisible “atomic” objects.

The following Naproche commands introduce the notion (or type) of
natural numbers. Together with an induction axiom to be stated later,
natural numbers can be understood as the inductive type generated by
0 and +1.

Signature 1. A natural number is a mathematical object.

Let n,m, k, l, i, j denote natural numbers.

Definition 2. N is the collection of natural numbers.

Axiom 3 (Axiom of Infinity). N is a set.

Signature 4. 0 is a natural number.

Let x is nonzero stand for x ̸= 0.

Signature 5. 1 is a nonzero natural number.

Signature 6. m+ n is a natural number.

Axiom 7. If n is a nonzero natural number then n = m + 1 for
some natural number m.

We postulate basic arithmetic properties of N axiomatically, al-
though they could also be proved inductively.
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Signature 8. m ∗ n is a natural number.

Axiom 9. m+ n = n+m.

Axiom 10. (m+ n) + l = m+ (n+ l).

Axiom 11. m+ 0 = m = 0 +m.

Axiom 12. m ∗ n = n ∗m.

Axiom 13. (m ∗ n) ∗ l = m ∗ (n ∗ l).
Axiom 14. m ∗ 1 = m = 1 ∗m.

Axiom 15. m ∗ 0 = 0 = 0 ∗m.

Axiom 16. m ∗ (n + l) = (m ∗ n) + (m ∗ l) and (n + l) ∗ m =
(n ∗m) + (l ∗m).

Axiom 17. If l +m = l + n or m+ l = n+ l then m = n.

Axiom 18. Assume that l is nonzero. If l∗m = l∗n or m∗l = n∗l
then m = n.

Axiom 19. If m+ n = 0 then m = 0 and n = 0.

We name two more natural numbers:

Definition 20. 2 = 1 + 1.

Definition 21. 3 = 2 + 1.

0.4 The Natural Order

Definition 22. m ≤ n iff there exists a natural number l such
that m+ l = n.

Let m < n stand for m ≤ n and m ̸= n. Let n > m stand for
m < n. Let n ≥ m stand for m ≤ n.

Definition 23. Assume that n ≤ m. m− n is a natural number
l such that n+ l = m.

The following three lemmas show that ≤ is a partial order:

Lemma 24. m ≤ m.

Lemma 25. If m ≤ n ≤ m then m = n.

Proof. Let m ≤ n ≤ m. Take natural numbers k, l such that
n = m + k and m = n + l. Then m = m + (k + l) and k + l = 0
and k = 0. Hence m = n.

Lemma 26. If m ≤ n ≤ l then m ≤ l.
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We axiomatically postulate monotonicity properties for the arithmeti-
cal operations.

Axiom 27. m ≤ n or n < m.

Lemma 28. Assume that l < n. Then m + l < m + n and
l +m < n+m.

Lemma 29. Assume that m is nonzero and l < n. Then m ∗ l <
m ∗ n and l ∗m < n ∗m.

0.5 Induction

Naproche provides an in-built binary relation symbol ≺ as a universal
inductive relation: if

(inheritance property) at any point m property P holds at
m provided all ≺-predecessors of m satisfy P

then

P holds everywhere.

Naproche has a proof tactic ”by induction [on ...]”, which reduces
the inductive proof goal ”P holds everywhere” to proving the inheri-
tance property for P .

Initially, there is no specification of ≺. The induction proof method
for some concrete relation is made available by embedding that relation
into ≺. Therefore we axiomatically embed the natural order into ≺.

Axiom 30. If m < n then m ≺ n.

Let m is inductively smaller than n stand for m ≺ n.

As a first example of induction we show:

Lemma 31. For every natural number n: n = 0 or 1 ≤ n.
Proof by induction. Let n be a natural number. Case n = 0.
Trivial.

Take n′ = n− 1.

Lemma 32. If m ≤ n+ 1 then m ≤ n or m = n+ 1.

Lemma 33. Let m ̸= 0. Then n ≤ n ∗m.

Proof. 1 ≤ m.

Here are some intuitive facts about the numbers 0, 1, 2, 3:
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Lemma 34. If m ≤ 0 then m = 0.

Lemma 35. If m ≤ 1 then m = 0 or m = 1.

Lemma 36. If m ≤ 2 then m = 0 or m = 1 or m = 2.

Lemma 37. 0 < 1 < 2 < 3.

0.6 Division

Definition 38. n divides m iff for some l: m = n ∗ l.

Let x|y denote x divides y. Let a divisor of x denote a natural
number that divides x.

Lemma 39. Assume l|m|n. Then l|n.
Lemma 40. Let l|m and l|m+ n. Then l|n.
Proof. Case l is nonzero. Take a natural number q such that
m = l ∗ q. Take a natural number r such that m+ n = l ∗ r.

Let us show that q ≤ r.

Proof by contradiction. Assume the contrary. Then r < q. m +
n = l ∗ r < l ∗ q = m. Contradiction. qed.

Take s = r−q. We have (l∗q)+(l∗s) = l∗r = m+n = (l∗q)+n.
Hence n = l ∗ s. qed.
Lemma 41. Let m|n ̸= 0. Then m ≤ n.

Definition 42. n is even iff 2 divides n.

Let n is odd stand for n is not even.

Lemma 43. For all natural numbers n n is even or n = (2∗m)+1
for some m.

Proof by induction. Let n be a natural number.

Case n = 0. Trivial.

Take n′ = n− 1.

Case n′ is even. Take a natural number m′ such that n′ = 2 ∗m′.
Then n = (2 ∗m) + 1 for some m. qed.

Take a natural number m′ such that n′ = (2 ∗ m′) + 1. Then
n = ((2 ∗m′) + 1) + 1 = 2 ∗ (m′ + 1). Hence n is even.

0.7 Prime Numbers
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[dump on] Let p, d denote natural numbers.

Let n is nontrivial stand for n ̸= 0 and n ̸= 1.

Definition 44. p is prime iff p is nontrivial and for every divisor
d of p d = 1 or d = p.

Let a prime number stand for a natural number that is prime.

Lemma 45. 2 is prime.

Lemma 46. Every even prime number is equal to 2.

Lemma 47. 3 is prime.

Lemma 48. Every nontrivial natural number has a prime divisor.

Proof by induction.

0.8 Euclid’s Lemma

We need that prime numbers are prime elements in the ring of integers,
or the halfring of natural numbers. The following argument is taken
over almost verbatim from the Wikipedia article on Euclid’s Lemma
[6].

Definition 49. m and n are coprime iff every common divisor of
m and n is equal to 1.

Lemma 50. If m and m are coprime then m = 1.

Let a, b denote natural numbers.

Lemma 51. For all nonzero natural numbers n, a, b if n|a ∗ b and
n and a are coprime then n divides b.

Proof by induction on a ∗ b.

Let n, a, b be nonzero natural numbers such that n|a∗b and n and
a are coprime. Take a natural number q such that n ∗ q = a ∗ b.

Case n = a. Then n = 1 and n|b. qed.

Case a > n. Then q ≥ b.

n ∗ (q − b) = (n ∗ q)− (n ∗ b) = (a ∗ b)− (n ∗ b) = (a− n) ∗ b.

Thus n divides (a−n)∗b. n and a−n are coprime. (a−n)∗b < a∗b.
(a−n) ∗ b is inductively smaller than a ∗ b. Thus n divides b. qed.

Hence n > a and b ≥ q.

(n− a) ∗ q = (n ∗ q)− (a ∗ q) = (a ∗ b)− (a ∗ q) = a ∗ (b− q).
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n−a divides a∗(b−q). n−a and a are coprime. a∗(b−q) < a∗b.
a ∗ (b − q) is inductively smaller than a ∗ b. Thus n − a divides
b− q.

Take a natural number r such that b− q = r ∗ (n− a).

(n − a) ∗ q = (n ∗ q) − (a ∗ q) = (a ∗ b) − (a ∗ q) = a ∗ (b − q) =
a ∗ (r ∗ (n− a)) = (a ∗ r) ∗ (n− a).

n− a ̸= 0 and q = a ∗ r.

a ∗ (n ∗ r) = n ∗ (a ∗ r) = n ∗ q = a ∗ b.

Then n ∗ r = b and n divides b.

Theorem 52 (Euclids Lemma). Let p be a prime number and
p|m ∗ n. Then p|m or p|n.

References

[1] Anonymous

[2] The Isabelle homepage: https://isabelle.in.tum.de/

[3] Andrei Paskevich: The syntax and semantics of the ForTheL lan-
guage. http://nevidal.org/download/forthel.pdf, 2007.

[4] Stephan Schulz: The E Theorem Prover. http://wwwlehre.dhb
w-stuttgart.de/~sschulz/E/E.html

[5] The Vampire homepage: https://vprover.github.io/

[6] Wikipedia entry “Euclid’s Lemma”: https://en.wikipedia.org
/wiki/Euclid\%27s_lemma

8


